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A Technical Proofs

A.1 Proof of Theorem 4

We concentrate on the case for interior x; the proof for boundary x is similar and
thus omitted. We also employ a short-handed notation K; := Kgg (X;;x,b) to save

space. Then, it suffices to demonstrate that

n—1

Var { Vb g (2) } = Var (0/K:) +2 3 (1 - é) Cov (b K, b/ K, ) ~ Vi (2) ff;).
(=1

It follows from Theorem 1 that Var (b'/*K;) ~ V7 (2) f (z) /\/z. Hence, we only

need to show that

n—1
(1 — —) Cov (b/*K;, 0"* K, 14) = 0(1). (A1)
(=1

Observe that the absolute value of the left-hand side of (A1) is bounded by

o) dn [e'e)
Z |Cov (b1/4Ki,b1/4Ki+g)| = <Z+ Z > ’Cov (b1/4Ki,b1/4Ki+g)‘ = V14V, (say),

(=1 (=1 {=dp+1
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where the increasing sequence d,, is specified shortly. We evaluate V5 first. By
Davydov’s lemma (e.g. Corollary A.2 of Hall and Heyde, 1980) and the stationarity
of Xi,

|Cov (B4, bV K0 | < 8WY2 (B K — E (K" a ()27 (A2)

By C,-inequality and K; > 0, F'|K; — E (K;)|" < 2" ' [E (KT) + {E (K;)}"]. Because

E(K;) =0 (1) and E (K]) = O {4, (z)} = O (b'=/2) by the proof of Theorem 1,

we have
E|K,— E(K)["=0 (51?) . (A3)
The size of the mixing coefficient also implies that
a(l) < Cel™1 (A4)

for some constants 0 < Cg < 0o and ¢ > (2—2/r) /(1 —2/r). Substituting (A3)
and (A4) into (A2) yields |C’0v (bMK;, b1/4Ki+g)| < cbt/r=1/2¢=a1=2/7) " Hence, V, <
bt /r2 N 01072 where g (1 — 2/r) > 1 holds by construction. Also define

d, == [b=°] for some a € ((1/2){g—1/ (1 —2/r)} ",1/2). Then,

etz o [T a2 dn "2 (a(1—2/r)—1)
z—q—’"g/ g2/ gy - n — O {paa=2/I-D1  (A5)
Py . a—zm—1_ 1 j

and thus Vs < O {ba0-2/m-D-0/20-2/m} _, .
We now turn to V;. The stationarity of X; and K; > 0 imply that ‘Cov (LYK, b K ) ‘ <
b'/? [E (K;Kiy) + {E (Ki)}Q], where both F (K;K;,) and F (K;) are O (1). There-

fore, Vi < O (d,b'/?) = O (b*/*7*) — 0, which establishes (A1). W
A.2 Proof of Theorem 5

The proof requires four lemmata below. In particular, a Bernstein-type inequality
for strong mixing processes in Lemma A4, which restates Theorem 2.1 of Liebscher

(1996), constitutes the key part of the proof.
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Lemma A1. Let (ag,By,7) := (a5 (0),5,(0),7,(0)). Then, for any 6 > 0,

P [ {uf (B (a0/v0) /T (a0 + 1) /30))} )
| Keotmonan= | TBoT @0/ 70) /T ({0 + 1) /7)) T (a0/70)

du — 1,

as b— 0.

Lemma A2. For some T € [0,C1b), Kgg (u;Z,b) < C7b~t, where

Cy = (g—f) (Cy + 1) (Cy + 2) max {1, (Cy — 1)04—1} .

Lemma A3. Let K; = Kgg (Xi;7,0) — E{Kgg (X4;7,b)} for & defined in Lemma

A2. Then, E (3", Ki)Z < Cgmb=2, where

L 2 1-2/r 1
s = 22 [1+3206 {1+ q(1—2/7“)—1H .

Lemma A4. (Liebscher, 1996, Theorem 2.1) Let {Z;} be a strictly stationary
and strong mizing process with the mizing coefficient o« ({) such that E(Z;) = 0

and |Z;| < S(n),i = 1,...,n. Then, for any integer 1 < m < n and for any

e > 4mS (n),
&2

br ( 22> 6) < dexp {_64 (n/m) o2 (m) + (8/3) emS (n)} Haqalm),

i=1
where o* (m) == E (3.1, Z:)°.

A.2.1 Proof of Lemma Al

By the change of variable v := [u/ {8 (co/7o) /T ((ag + 1) /7o), the integral can
be rewritten as fOC‘S {v@/70)"1 exp (—v) /T (an/7,) } dv, where the integrand is the
pdf of G (ap /7y, 1), and

(5 Yo
Bol (o /7o) /T {0 +1) /70 }

3

Cs =




Therefore, the proof is boiled down to showing that for any 6 > 0, Cs — co as b — 0.
Recognizing g € [1,Cy4] and v, > 1, we deduce that ag = O (y,) or ag = 0 ()
must be the case. If ag = O (7,), then I" (ag/7,) and I' {(ag + 1) /7, } are both O (1).
It follows from Condition 2 that Cs = O (ﬂa 70) = O (b~7) — oo. Alternatively,
if &g = 0(7y), then we may pick an arbitrarily small b so that |ag/7,| < 1 and

|(o 4+ 1) /7] < 1. Using SELG and the property of the gamma function yields
2 (—=1)*C (K
logT' (2) = —log (2) — vz + Z %zk
k=2
for z = ap /7y, (o + 1) /79. Then,
I (a0 /7o) { (ao) ap+1
= expqlogl' [ — ) —logI’
I'{(ap+1) /70} Yo Yo
1 1 ap)’
= (1+—|exp|O(— | +O<|—
Qo Yo Yo

and thus it again holds that Cs = O (b)) — co. R

A.2.2 Proof of Lemma A2

Let (@, 3,7) == (% (%), 8, (Z) .7 (Z)). The upper bound can be implied by K¢ (u*; Z, b),
where u* is the mode. Because the shape of Kg¢ (u; Z,b) is substantially different
between the cases with @ =1 and & > 1, we evaluate two cases separately.

When a > 1, a straightforward calculation yields

Ut — [F{B(gfv{;y;:y}} <a; 1)1/W

so that

= (3)[H] (55)" e (551)}

Observe that I'{(a + 1) /7} /T* (a/7) = {T' (2a/7) /T* (a/7)} [ {(a + 1) /7} /T (2a/7)].

It follows from Corollary 1 of Cerone (2007) and the property of the gamma function
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that for z > 0,

T2 (1 + 2) 1 I (22)
I'(2+22) = (14 2)*™ T2 (2)

Putting z = a/7 gives

% = (é) <7+d2a) (H %)MM- (A8)

Moreover, by Theorem 1 of Kecki¢ and Vasi¢ (1971) and the property of the gamma

function, for x > y > 0,

(1+x) 1+x)*

( Py _z(+y)”
T(i+y) ~ A+y)° -

I'(z) = y(1+2)"

exp (y —z) =

Letting (x,y) = (2a/%, (& + 1) /¥), we have

/) < 26 ) {1+@+1/307 (a— 1) (A9)
—— X .
)~ \1+a) (t2am@r O P\7

Substituting (A8) and (A9) into (A6), rearranging it, and then using a € (1,C4],

B> Cyb and 4 > 1, we deduce that

s = () () (2222 ]
- (%Jrl)Q (@;1 o 1/ (@; 1><&—1>/w
< (C’%b) 1. (ijz 1) 1 (Cy4+1)2(C4+2) - max{l, (Cy — 1)04_1}.

In sum, as far as a > 1, Kgg (u;Z,b) < C7b~1, where

Cy = (g:) (Cy + 1) (Cy + 2) max {1, (Cy— 1)04*1} .

On the other hand, when @ = 1, it follows from (A7) and u* = 0 that

K (u';2,b) = <5>{F2 21//:} i
() {rmat (3)
< (C%b) (5) 7= ( )

Note that C; > 6/Cy holds, which establishes the lemma. B

|21
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A.2.3 Proof of Lemma A3

By the stationarity of Z;,

m 2 m—1
E (Z K) <mE(K7)+2)  (m—0)E|KKi, (A10)
i=1
where, by Lemma A2 and fooo f(u)du =1,
E (K?) < E|Kge (Xi;2,b) + E? |Kge (Xi;7,b)| < 202072, (A1)

Following the same manner as in the proof of Theorem 4, we also have F |K’J§}+4‘ <

8 (E ‘Ki}r)wr Q (K)l_g/r, where, by C-inequality, Lemma A2 and [;° f (u) du = 1,
E|K;|" <27'{E|Kga (Xi;2,0)|" + E" |Kae (Xi;2,b)[} < (2C7071)".

Therefore, £ ‘Ki—’_{i+£| < 3205—2/7‘0%72%4(172/7«) by (A4), and thus

-1

3

(m —0) E|KiKi| < 320527 C2mb 2 Z ¢—a(1=2/7)

1 (=1

< 320,72 {1 +
q

~
I

1
1—2/r) -1

} mb~?, (A12)

where the last inequality follows from (A5). Combining (A10), (A1l) and (A12)

establishes the result. W

A.2.4 Proof of Theorem 5

This proof largely follows the one of Proposition 3.3 in Bouezmarni and Van Bellegem

(2011). The proof completes if the following statements hold for some z € [0, C1b):

foo (@) = E{fae(az)}+op(1). (A13)
B{fec@} = E{foc(0)}+0o01). (AL4)
E{joc(0)} — oo (A15)

Note that (A14) immediately follows from the fact that Kgg (u;Z,b) — Kge (u;0,b)

as T — 0.



We demonstrate (A15) first. When f(z) — oo as x — 0, it holds that for any
A > 0, there is some ¢ > 0 such that f (z) > A for all z < 6. For the given §, Lemma

A1 implies that

6
fG’G /KGG UOb ()dU>A/ Kgg(u;O,b)du%A,
0

which establishes (A15).

To show (A13), consider K; in Lemma A3. Then, E (K;) = 0 and the same
logic as applied for (A11) establishes that |K;| < 2C7b~. Also pick b = O (n™")
for some n € (0,1/2) and m = [n?] for some a € (max{n,1/(1+q)},1/2) for
concreteness. Then, for a sufficiently large n, 1 < m < n holds. Because m (nb)_1 =
O {n*=0=m} — 0, we also have ne > 8Cymb~! for an arbitrarily chosen ¢ > 0.

Therefore, for the given €, we may apply Lemmata A3 and A4 and (A4) to obtain

Pr <‘fGG (Z) — E{fGG (:E)H > e)

= Pr( | > ne)
i=1
(ne)”

dexp {_ 64 (n/m) (Csmb~2) + (8/3) (ne) m (2C7b-1) } 4, (Com™)
B €% (nb?)
= dexp {_ 16 (12Cs + Cremb)

} + 4Cgnm~ 0+, (A16)

Since mb = O (n*") — o0, a geometric series expansion to (the absolute value of)

the exponent of the first term yields

16(1528(—7:6276“117) N (122) {14-{1208/(1076)}(7”[))_1} (%b)
- (we) [ (&) o rotem ] (37)

Therefore, the right-hand side of (A16) is bounded by O {exp (— (3¢) (16C;) (nb/m)) }+

O {n (a(l+q)— } — 0, which completes the proof. B



A.3 Proof of Theorem 6

This proof largely follows the one of Theorem 5.3 in Bouezmarni and Scaillet (2005).
For some Z € [0,C1b), the proof is boiled down to establishing the following state-

ments:

— 0. (A17)

2 0. (A18)

We demonstrate (A17) first. Although Theorem 5.3 of Bouezmarni and Scaillet
(2005) is based on random sampling, their proof strategy still works for (A17). An
inspection of the proof reveals that (A17) is shown if their conditions A.2, A.3 and
A.5 are fulfilled. Because [;* f(z)dz = 1 and f(z) — oo as * — 0, there are
constants 0 < Cy, Cjg < oo such that Coz=? < f (x) < Croz~? for some d € (0,1)
as x — 0. Accordingly, f'(z) = O (:U_d_l) for a small value of x. These imply
that z |f' (x)| /f () < O(1), and thus A.2 follows. Next, a minor modification of
the proof of Lemma Al establishes that for any 6 > 0, f06 Kge (u;2,b)du — 1 as
Z,b — 0; indeed, the argument in the proof still holds after replacing («v, 5y, 7o) With
(@,B,f‘y) = (a (Z), 0, (Z),7,(Z)). Hence, A.3 is also valid. Finally, the proof of
Theorem 1 and Conditions 1 and 3 suggest that Var (6;) = 5° {M, (z) — 1} = O (b?)
as 7,b — 0 for 0z < GG (a, AT (a/7) /T{(@+1)/7},7). Therefore, A.5 is also
established, and thus (A17) is proven.

To show (A18) under dependent sampling, we rely on Lemma A4 as in the proof
of Theorem 5 above. For K; defined in Lemma A3, E (l_(,) =0 and ‘KZ‘ < 207b71.
We again pick b = O (n™") for some n € (0,1/2) and m = |n*| for some a €

(max {n,1/(1+q)},1/2). Then, for a sufficiently large n, 1 < m < n holds. Because



m{nbf ()} ' =0 {n" 0= f1(z)} - 0asz — 0, we also have nf (z) € > 8Cymb ™
for an arbitrarily chosen € > 0. Therefore, for the given €, we may apply Lemmata

A3-A4 and (A4) to obtain

foo (@) = B foo (@)}

Pr 7@ a
= Pr( ‘ _i >nf($)€>
_ {nf (z)e}” m~1
= 4eXP[ 64 (n/m) (Csmb—2) + (8/3) {nf (z) e} m (2C7b1) o (G

~ dexp {_ (1§é7> {1_ (1528) (mbf (7))~ 4+ O ((mbf (7)) }{nbf H

+4Csnm =+, (A19)

where the geometric series expansion in the final equality comes from the fact that
mbf (z) = O{n*"f(Z)} — oco. Therefore, the right-hand side of (A19) is bounded
by O {exp (— (3¢) (16C7) " (nbf (z) /m) )} 4+ O {n~(0+9=U1 — 0, which completes

the proof. W

B Comprehensive Simulation Results

Table B1 below presents expanded simulation results. In addition to six density
estimators reported in Section 4, the density estimator using the Gaussian kernel is
included as a symmetric kernel density estimator (“S”) in the original scale. Besides,
while the tuning parameter (i.e. b or h) for each estimator mentioned so far is chosen as
the minimizer of the (approximated) RISE, the rule-of-thumb smoothing parameter in
Section 2.2.3 is also examined for W, NM and MG. Asterisks indicate the estimators

with this type of smoothing parameter plugged in.



Table B1: Averages of Performance Measures and Tuning Parameter Values
n =100 n =200 n =500
RISE b orh RISE b orh RISE b orh
1. Gamma

GG W 0.0356 (0.0098) 0.2778 0.0294 (0.0081) 0.1701 0.0221 (0.0057) 0.0897
NM  0.0368 (0.0091) 0.3007 0.0306 (0.0076) 0.1861 0.0232 (0.0055) 0.0975

MG 00362 (0.0112) 0.1712  0.0289 (0.0088) 0.1105  0.0211 (0.0059) 0.0683

W+ 0.0392 (0.0115) 0.1653 0.0311 (0.0088) 0.1261 0.0229 (0.0058) 0.0873

NM* 0.0401 (0.0099) 0.2584 0.0330 (0.0077) 0.1971 0.0252 (0.0052) 0.1365

MG* 0.0385 (0.0120) 0.1292 0.0302 (0.0091) 0.0985 0.0219 (0.0060) 0.0682
NonrGG G 0.0358 (0.0125) 0.1404 0.0290 (0.0098) 0.0962 0.0220 (0.0066) 0.0601
S 0.0415 (0.0123) 0.2937 0.0337 (0.0090) 0.2401 0.0256 (0.0062) 0.1831

LT 00441 (0.0157) 0.4434 00348 (0.0114) 03820  0.0252 (0.0074) 0.3149

LL 00368 (0.0116) 1.0272 0.0302 (0.0088) 0.7524  0.0234 (0.0061) 0.5152

2. Webull

GG W 00374 (0.0119) 0.1870  0.0297 (0.0090) 0.1228  0.0214 (0.0058) 0.0809
NM 0.0385 (0.0116) 0.2090  0.0307 (0.0088) 0.1382  0.0222 (0.0058) 0.0911

MG 00367 (0.0127) 01272  0.0286 (0.0092) 0.0915  0.0204 (0.0060) 0.0634

W#*  0.0414 (0.0132) 0.1102 0.0320 (0.0093) 0.0840 0.0228 (0.0060) 0.0585

NM* 0.0414 (0.0127) 0.1721 0.0323 (0.0091) 0.1313 0.0231 (0.0059) 0.0914

MG* 0.0400 (0.0132) 0.0861 0.0308 (0.0094) 0.0657 0.0218 (0.0061) 0.0457
NonGG G 0.0368 (0.0140) 0.1137 0.0294 (0.0103) 0.0813 0.0218 (0.0069) 0.0526
S 00375 (0.0123) 03167 0.0304 (0.0090) 0.2647  0.0227 (0.0059) 0.2083

LT 00470 (0.0154) 03730 00368 (0.0110) 0.3187  0.0267 (0.0073) 0.2584

LL 00367 (0.0127) 0.8234 0.0294 (0.0092) 0.6600  0.0217 (0.0060) 0.5098

3. Half-Normal

GG W 00274 (0.0113) 03445  0.0225 (0.0083) 02745  0.0172 (0.0056) 0.1936
NM 00251 (0.0120) 0.3809  0.0207 (0.0088) 0.3152  0.0158 (0.0059) 0.2354

MG 0.0303 (0.0117) 0.2662 0.0245 (0.0087) 0.2039 0.0184 (0.0060) 0.1380

W#*  0.0413 (0.0148) 0.1164 0.0323 (0.0107) 0.0886 0.0234 (0.0069) 0.0616

NM* 0.0361 (0.0141) 0.1819 0.0288 (0.0104) 0.1385 0.0211 (0.0068) 0.0962

MG* 0.0423 (0.0154) 0.0910 0.0328 (0.0111) 0.0692 0.0235 (0.0071) 0.0481
Non-GG G 00327 (0.0112) 0.1750  0.0262 (0.0087) 0.1325  0.0193 (0.0057) 0.0911
S 00531 (0.0122) 02579  0.0461 (0.0092) 0.1946  0.0375 (0.0067) 0.1276

LT 00586 (0.0191) 04735 00457 (0.0140) 0.3997  0.0329 (0.0085) 0.3224

LL 0.0256 (0.0119) 1.4774 0.0203 (0.0094) 1.2598 0.0147 (0.0064) 1.0193
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Table B1: Continued

n =100 n =200 n =500
RISE b orh RISE b orh RISE b orh
4. Log-Normal

GG W 00429 (0.0153) 0.0830 0.0332 (0.0110) 00654  0.0242 (0.0080) 0.0471
NM  0.0447 (0.0152) 0.0932 0.0343 (0.0108) 0.0749 0.0245 (0.0078) 0.0562

MG 0.0416 (0.0158) 00624  0.0324 (0.0114) 0.0480  0.0238 (0.0081) 0.0334

W* 00543 (0.0159) 0.1584  0.0416 (0.0118) 0.1213  0.0292 (0.0087) 0.0852

NM* 0.0715 (0.0153) 0.2476 0.0564 (0.0123) 0.1896 0.0387 (0.0091) 0.1331

MG* 00531 (0.0170) 0.1238  0.0413 (0.0127) 0.0948  0.0299 (0.0091) 0.0666
NonGG G  0.0458 (0.0150) 0.0535 0.0360 (0.0108) 0.0390 0.0263 (0.0075) 0.0261
S 0.0527 (0.0133) 0.1929 0.0422 (0.0095) 0.1565 0.0313 (0.0067) 0.1205

LT 00401 (0.0166) 0.3207  0.0315 (0.0122) 0.2782  0.0232 (0.0082) 0.2310

LL 0.0482 (0.0147) 0.4415 0.0381 (0.0106) 0.3683 0.0282 (0.0073) 0.2937

5. Generalized Champernowne

GG W 0.0477 (0.0169) 0.1324 0.0391 (0.0126) 0.0922 0.0295 (0.0101) 0.0547
NM 0.0477 (0.0161) 0.1448  0.0390 (0.0122) 0.1033  0.0294 (0.0099) 0.0637

MG 0.0504 (0.0190) 0.0881 0.0403 (0.0141) 0.0618 0.0298 (0.0106) 0.0388

W*  0.0571 (0.0252) 0.1796 0.0458 (0.0195) 0.1397 0.0358 (0.0174) 0.1052

NM* 0.0652 (0.0327) 02807 0.0525 (0.0251) 0.2184  0.0420 (0.0230) 0.1645

MG* 0.0598 (0.0254) 0.1404 0.0482 (0.0198) 0.1092 0.0372 (0.0176) 0.0822
Non-GG G  0.0504 (0.0195) 0.0676 0.0403 (0.0151) 0.0485 0.0301 (0.0107) 0.0318
S 00623 (0.0195) 01333 0.0513 (0.0139) 0.1100  0.0404 (0.0094) 0.0845

LT 0.0700 (0.0246) 0.4451 0.0544 (0.0177) 0.3807 0.0394 (0.0117) 0.3118

LL 00513 (0.0183) 04850  0.0413 (0.0137) 0.3618  0.0308 (0.0101) 0.2637

6. Gamma with Pole

GG W 00617 (0.0181) 0.0858  0.0494 (0.0136) 0.0591  0.0359 (0.0091) 0.0380
NM  0.0652 (0.0168) 0.0855 0.0523 (0.0128) 0.0586 0.0380 (0.0088) 0.0373

MG 00627 (0.0171) 0.0803  0.0500 (0.0131) 0.0554  0.0368 (0.0098) 0.0357

W* 00773 (0.0172) 0.1772  0.0644 (0.0128) 0.1365  0.0497 (0.0084) 0.0947

NM* 0.0974 (0.0150) 0.2770 0.0830 (0.0110) 0.2133 0.0660 (0.0073) 0.1479

MG* 0.0739 (0.0153) 01385 0.0607 (0.0111) 0.1066  0.0465 (0.0075) 0.0740
NonGG G 00614 (0.0202) 0.0571  0.0494 (0.0157) 0.0389  0.0363 (0.0107) 0.0242
S 0.1116 (0.0178) 0.0779 0.0954 (0.0137) 0.0523 0.0751 (0.0092) 0.0316

LT 00639 (0.0304) 07389  0.0498 (0.0213) 0.6298  0.0361 (0.0140) 0.5138

LL 0.0650 (0.0161) 0.5280 0.0549 (0.0125) 0.3905 0.0438 (0.0099) 0.2552

Note: Numbers in parentheses are simulation standard deviations of RISEs.

“b

or h” denotes simulation averages of the values of smoothing parameters b for W,
NM, MG, and G, or the lengths of bandwidths A for S, LT and LL. Estimators with
asterisks are those with rule-of-thumb smoothing parameters plugged in.
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