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a b s t r a c t

This paper demonstrates that two classes of multiplicative bias correction (MBC)
techniques, originally proposed for density estimation using symmetric second-order
kernels by Terrell and Scott (1980) and Jones et al. (1995), can be applied to density
estimation using the beta and modified beta kernels. It is shown that, under sufficient
smoothness of the true density, both MBC techniques reduce the order of magnitude in
bias, whereas the order of magnitude in variance remains unchanged. Accordingly, mean
squared errors of these MBC estimators achieve a faster convergence rate of O

(
n−8/9

)
for

the interior part, when best implemented. Furthermore, the estimators always generate
nonnegative density estimates by construction. To implement the MBC estimators, a plug-
in smoothing parameter choicemethod is proposed.Monte Carlo simulations indicate good
finite sample performance of the estimators.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let X1, . . . , Xn be a random sample drawn from a univariate distribution with density f having support [0, 1]. In order to
estimate the density at a design point x ∈ [0, 1], we may initially consider a usual kernel density estimator

f̂ (x) =
1
nh

n∑
i=1

K
(
x− Xi
h

)
,

where K (·) is a symmetric probability density function having supportR or some finite interval such as [−1, 1], and h > 0 is
a smoothing parameter called the bandwidth. However, this estimator does not workwell for density estimation on the unit
interval without boundary correction. Indeed, there is huge literature on correctionmethods for boundary effects; examples
include Müller (1991), Jones (1993), Jones and Foster (1996), Zhang et al. (1999), Hall and Park (2002), and Karunamuni and
Alberts (2005), to name a few.
As an alternative device to these boundary correction methods, Chen (1999) proposes a class of so-called asymmetric

kernel functions that have the same support as the density to be estimated has. Specifically, he considers the beta kernel
density estimator

f̂B (x) =
1
n

n∑
i=1

KB(x/b+1,(1−x)/b+1) (Xi) ,

I I would like to thank an Associate Editor and two anonymous referees for helpful comments and suggestions.
∗ Tel.: +1 815 753 6434; fax: +1 815 752 1019.
E-mail address:mhirukawa@niu.edu.
URL: http://www.math.niu.edu/∼hirukawa/.

0167-9473/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2009.09.017

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:mhirukawa@niu.edu
http://www.math.niu.edu/~hirukawa/
http://www.math.niu.edu/~hirukawa/
http://www.math.niu.edu/~hirukawa/
http://www.math.niu.edu/~hirukawa/
http://www.math.niu.edu/~hirukawa/
http://www.math.niu.edu/~hirukawa/
http://dx.doi.org/10.1016/j.csda.2009.09.017


474 M. Hirukawa / Computational Statistics and Data Analysis 54 (2010) 473–495

and the modified beta kernel density estimator

f̂MB (x) =
1
n

n∑
i=1

KB(ρb,0(x),ρb,1(x)) (Xi) ,

where KB(α,β) (u) = uα−1 (1− u)β−1 1 {0 ≤ u ≤ 1} /B (α, β) is the density function for the beta distribution with
parameters α, β > 0,

ρb,0 (x) =
{
ρb (x) for x ∈ [0, 2b)
x/b for x ∈ [2b, 1] ,

ρb,1 (x) =
{
(1− x) /b for x ∈ [0, 1− 2b]
ρb (1− x) for x ∈ (1− 2b, 1] ,

ρb (x) = 2b2 +
5
2
−

√
4b4 + 6b2 +

9
4
− x2 −

x
b
,

and b > 0 is a smoothing parameter satisfying b + nb → 0 as n → ∞. Because the beta and modified beta kernels are
defined on the unit interval, both f̂B (x) and f̂MB (x) are free of boundary bias. Moreover, the shapes of these kernels vary
according to the design point, and thus the kernels change the amount of smoothing in a natural way.
Strictly speaking, the beta and modified beta kernels should be referred to as kernel-type weighting functions. As

discussed in Gouriéroux and Monfort (2006) and Jones and Henderson (2007a), unlike the cases of symmetric kernels,
roles of the data point X and the design point x in these functions are not exchangeable, which causes f̂B (x) and f̂MB (x)
not to integrate to unity. The phrase ‘kernel-type’ signifies the fact that they lack a basic property every symmetric kernel
possesses. Nevertheless, following the convention in the literature, these kernel-type functions are simply called the beta
and modified beta kernels throughout.
Smoothing by beta density weights is originally proposed as an extension to Bernstein polynomial smoothing (Brown

and Chen, 1999). After Chen (2000a) apply two beta kernels to nonparametric regression estimation, Bouezmarni and Rolin
(2003) demonstrate that f̂B (x) is consistent even if the true density becomes unbounded at a boundary. As an example of
empirical work, Renault and Scaillet (2004) and Hagmann et al. (2005) apply f̂B (x) for estimating recovery rate densities in
credit risk modelling. Gouriéroux and Monfort (2006) point out potential issues of applying f̂B (x) in recovery rate density
estimation, and propose their possible solutions.
Provided that the true density f is twice continuously differentiable, the biases of f̂B (x) and f̂MB (x) areO (b) as b→ 0. This

paper considers the improvements in beta kernel density estimation that reduce the order of magnitude in bias to O
(
b2
)

under sufficient differentiability of f , while the order of magnitude in variance is maintained. In the cases of symmetric
kernels, this kind of rate improvements can be typically achieved by employing higher-order kernels; see Jones and Foster
(1993) for methods of generating higher-order kernels from a given second-order kernel. To our best knowledge, equivalent
techniques are yet to be proposed for asymmetric kernels (including two beta kernels). Instead, this paper applies two
classes of multiplicative bias correction (MBC) techniques to attain the rate improvements. The first class of MBC concerned
is to construct a multiplicative combination of two density estimators using different smoothing parameters. This idea is
originally proposed by Terrell and Scott (1980) as an additive bias correction to the logarithms of densities, and later it is
generalized and reinterpreted as anMBC technique by Koshkin (1988) and Jones and Foster (1993), respectively. The second
class of MBC in the spirit of Jones et al. (1995) is based on the idea of expressing f (x) = f̂ (x)

{
f (x) /f̂ (x)

}
and estimating

the bias-correction term f (x) /f̂ (x) nonparametrically. This MBC technique is also applied in nonparametric regression
estimation (Linton and Nielsen, 1994), hazard estimation (Nielsen, 1998; Nielsen and Tanggaard, 2001), and spectral matrix
estimation (Xiao and Linton, 2002; Hirukawa, 2006). When applied to beta kernel density estimation, both MBC techniques
still yield the estimators that are free of boundary bias. In addition, these estimators have a practically appealing property.
They always generate nonnegative density estimates everywhere by construction, as f̂B (x) and f̂MB (x) do. To implement the
two classes of MBC estimators, this paper also proposes a plug-in method of choosing the smoothing parameter b with a
beta density used as a reference.
In the related literature, Hagmann and Scaillet (2007) apply a semi-parametric MBC technique in the spirit of Hjort and

Jones (1996) (called local multiplicative bias correction, or LMBC) to the beta density estimator. Gustafsson et al. (2009)
propose another semi-parametric MBC technique called local transformation bias correction (LTBC), which basically follows
the idea of Rudemo (1991). In both LMBC and LTBC, the beta kernel is used in nonparametric bias correction for initial
parametric density estimation. A key difference is that the bias correction is made for the original data in LMBC and for
the data transformed on the unit interval in LTBC. However, unlike the MBC estimators proposed in this paper, neither
LMBC nor LTBC improves the bias in order of magnitude. Furthermore, another class of asymmetric kernels, including the
gamma (Chen, 2000b), inverse Gaussian and reciprocal inverse Gaussian (Scaillet, 2004) kernels, has been proposed for
density estimation with support [0,∞), yielding density estimators that are free of boundary bias near the origin. TwoMBC
techniques considered in this paper can be readily applied for these kernels; research extensions in this direction will be
addressed in a separate paper.
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The remainder of the paper is organized as follows. Section 2 develops asymptotic properties of two classes of MBC
density estimators. Section 3 proposes a plug-in smoothing parameter choice method, and conducts small Monte Carlo
simulations to check finite sample properties of MBC estimators. Section 4 applies the MBC estimators for estimating the
density of eruption durations of the Old Faithful Geyser in Yellowstone National Park, Wyoming, USA. Section 5 summarizes
the main results of the paper. All proofs are given in the Appendix.
This paper adopts the following notational conventions: B (α, β) = 0 (α)0 (β) /0 (α + β) signifies the beta function;

0 (a) =
∫
∞

0 y
a−1 exp (−y) dy, a > 0 is the gamma function; and 1 {·} denotes an indicator function. The expression ‘X d

= Y ’
reads ‘‘A random variable X obeys the distribution Y ’’. Lastly, the expression ‘Xn ∼ Yn’ is used whenever Xn/Yn → 1 as
n→∞.

2. Beta MBC density estimators

2.1. Definitions

The idea of the geometric estimator by Terrell and Scott (1980, abbreviated as ‘‘TS’’ hereafter) can be readily extended
to beta kernel density estimation. For a given kernel j ∈ {B,MB}, let f̂j,b (x) and f̂j,b/c (x) denote density estimators using
smoothing parameters b and b/c , respectively, where c ∈ (0, 1) is some predetermined constant that does not depend on
the design point x. The TS-MBC beta kernel density estimators are defined as

f̃TS,j (x) =
{
f̂j,b (x)

} 1
1−c
{
f̂j,b/c (x)

}− c
1−c
.

The other MBC technique in the spirit of Jones et al. (1995, abbreviated as ‘‘JLN’’ hereafter) utilizes a single smoothing
parameter b. In light of the identity f (x) = f̂j,b (x)

{
f (x) /f̂j,b (x)

}
, the JLN-MBC beta kernel density estimators are defined

as

f̃JLN,j (x) = f̂j,b (x)

{
1
n

n∑
i=1

K(j;x,b) (Xi)

f̂j,b (Xi)

}
,

where K(j;x,b) (·) denotes the kernel j. Recognize that the term inside the brackets is a natural estimator of the bias-
correction term f (x) /f̂j,b (x). Also, by construction, both f̃TS,j (x) and f̃JLN,j (x) always generate nonnegative density estimates
everywhere.

2.2. Asymptotic properties

To approximate the bias and variance of each MBC estimator, the following regularity conditions are assumed:

(A1) For a given x ∈ [0, 1], f (x) > 0 and f ′′′′ (x) is continuous and bounded in the neighborhood of x.
(A2) The smoothing parameter b = bn satisfies b→ 0 and nb3 →∞ as n→∞.

The smoothness condition for the true density f in (A1) is standard for consistency of density estimators using fourth-
order kernels, whereas the condition that f is bounded away from zero is required for MBC. The condition (A2) implies that
the convergence rate of the smoothing parameter b is slower than O

(
n−1/3

)
. This condition is required to control the order

of magnitude of remainder terms in the approximation to the bias of each MBC estimator. It will be shown shortly that the
mean squared error (MSE)-optimal smoothing parameter is b∗ = O

(
n−2/9

)
if the design point x satisfies x/b → ∞ and

(1− x) /b → ∞, and bF = O
(
n−1/5

)
if x/b → κ or (1− x) /b → κ for some κ > 0; these convergence rates are indeed

within the required range.
We also call the position of x as ‘‘interior x’’ if x/b → ∞ and (1− x) /b → ∞, and ‘‘boundary x’’ if x/b → κ or

(1− x) /b→ κ . The following two theorems present the approximations to bias and variance terms of twoMBC estimators,
whose proofs are given in the Appendix.

Theorem 1. Suppose that the conditions (A1) and (A2) hold. Then, the biases of f̃TS,B (x) and f̃TS,MB (x) can be approximated by

bias
{
f̃TS,B (x)

}
∼

1
c (1− c)

pB (x) b2

=
1

c (1− c)

[
1
2

{
(1− 2x) f ′ (x)+ 1

2x (1− x) f
′′ (x)

}2
f (x)

−

{
−2 (1− 2x) f ′ (x)+

1
2

(
11x2 − 11x+ 2

)
f ′′ (x)

+
5
6
x (1− x) (1− 2x) f ′′′ (x)+

1
8
x2 (1− x)2 f ′′′′ (x)

}]
b2,
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bias
{
f̃TS,MB (x)

}
∼

1
c (1− c)

×

pMB (x) b
2 for x ∈ [2b, 1− 2b]

pMB,0 (x) b2 for x ∈ [0, 2b)
pMB,1 (x) b2 for x ∈ (1− 2b, 1]

=
1

c (1− c)
×



[
1
8
x2 (1− x)2

{
f ′′ (x)

}2
f (x)

−

{
−
1
2
x (1− x) f ′′ (x)

+
1
3
x (1− x) (1− 2x) f ′′′ (x)+

1
8
x2 (1− x)2 f ′′′′ (x)

}]
b2 for x ∈ [2b, 1− 2b]

1
2

[
ξ 2b (x)

{
f ′ (x)

}2
f (x)

−

{
ξ 2b (x)+ ξb (x)+

x
b

}
f ′′ (x)

]
b2 for x ∈ [0, 2b)

1
2

[
ξ 2b (1− x)

{
f ′ (x)

}2
f (x)

−

{
ξ 2b (1− x)+ ξb (1− x)+

1− x
b

}
f ′′ (x)

]
b2 for x ∈ (1− 2b, 1] ,

where

ξb (x) =
(1− x) {ρb (x)− x/b}
1+ b {ρb (x)− x/b}

= O (1) .

The variance of f̃TS,B (x) can be approximated by

var
{
f̃TS,B (x)

}
∼



λ (c)
2
√
π
√
x (1− x)

n−1b−1/2f (x) for interior x

1

(1− c)2

{
0 (2κ + 1)

22κ+102 (κ + 1)
−

2c
(1+ c)κ

(
c
1+ c

)cκ+1
0 ((1+ c) κ + 1)

0 (κ + 1)0 (cκ + 1)

+ c3
0 (2cκ + 1)

22cκ+102 (cκ + 1)

}
n−1b−1f (x) for boundary x,

where

λ (c) =

(
1+ c5/2

)
(1+ c)1/2 − 2

√
2c3/2

(1+ c)1/2 (1− c)2
.

Theorem 2. Suppose that the conditions (A1) and (A2) hold. Then, the biases of f̃JLN,B (x) and f̃JLN,MB (x) can be approximated by

bias
{
f̃JLN,B (x)

}
∼ qB (x) b2

= −f (x)

[
(1− 2x)

{
(1− 2x) f ′ (x)+ 1

2x (1− x) f
′′ (x)

f (x)

}′

+
1
2
x (1− 2x)

{
(1− 2x) f ′ (x)+ 1

2x (1− x) f
′′ (x)

f (x)

}′′]
b2,

bias
{
f̃JLN,MB (x)

}
∼

qMB (x) b
2 for x ∈ [2b, 1− 2b]

qMB,0 (x) b2 for x ∈ [0, 2b)
qMB,1 (x) b2 for x ∈ (1− 2b, 1]

=



−
1
4
x (1− x) f (x)

{
x (1− x) f ′′ (x)

f (x)

}′′
b2 for x ∈ [2b, 1− 2b]

−ξb (x) f (x)
{
ξb (x) f ′ (x)
f (x)

}′
b2 for x ∈ [0, 2b)

−ξb (1− x) f (x)
{
ξb (1− x) f ′ (x)

f (x)

}′
b2 for x ∈ (1− 2b, 1] ,

where ξb (x) is defined in Theorem 1. The variance of f̃JLN,B (x) can be approximated by

var
{
f̃JLN,B (x)

}
∼


1

2
√
π
√
x (1− x)

n−1b−1/2f (x) for interior x

0 (2κ + 1)
22κ+102 (κ + 1)

n−1b−1f (x) for boundary x.
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Asymptotic variances of f̃TS,MB (x) and f̃JLN,MB (x) are similar to those of f̃TS,B (x) and f̃JLN,B (x), except that the multipliers
in front of n−1b−1 for boundary x have slightly different forms. Two theorems demonstrate that both TS- and JLN-MBC
estimators are free of boundary bias. More importantly, these two MBC estimators reduce the order of magnitude in bias
from O (b) to O

(
b2
)
, while their variances are still O

(
n−1b−1/2

)
for interior x and O

(
n−1b−1

)
for boundary x. We can also see

that, for each of two MBC techniques, the modified beta kernel estimator eliminates the term involving f ′ (x) from the bias
over the interior region. Although f ′ (x) appears in the bias only in two small regions near the boundaries, it is compensated
by disappearance of higher-order derivatives.
The variance of JLN-MBC estimators is first-order asymptotically equivalent to that of bias-uncorrected estimators f̂B (x)

and f̂MB (x) for interior x. While the beta LMBC density estimator in Hagmann and Scaillet (2007, Proposition 2) also yields
the same leading variance term, it does not reduce the bias in order of magnitude. In contrast, when JLN-MBC is applied
for density estimation using a symmetric second-order kernel, the leading variance term tends to be larger (although not
inflated in order of magnitude) because the multiplier in the variance term involves the roughness (or squared integral) of
the ‘twiced’ kernel (Stuetzle andMittal, 1979) that is generated by the original kernel. Moreover, due to the multiplier λ (c),
which is increasing in c ∈ (0, 1) and takes the value from 1 to 27/16, the asymptotic variance of TS-MBC estimators tends
to be larger than those of f̂B (x) and f̂MB (x) for interior x.
For interior x, MSEs of f̃TS,j (x) and f̃JLN,j (x) can be approximated by

MSE
{
f̃TS,j (x)

}
=

p2j (x)

c2 (1− c)2
b4 +

n−1b−1/2λ (c) f (x)
2
√
π
√
x (1− x)

+ o
(
b4 + n−1b−1/2

)
,

MSE
{
f̃JLN,j (x)

}
= q2j (x) b

4
+
n−1b−1/2f (x)
2
√
π
√
x (1− x)

+ o
(
b4 + n−1b−1/2

)
.

MSE-optimal smoothing parameters are

b∗TS,j =
{
c2 (1− c)2 λ (c)

}2/9 { f (x)
16
√
π
√
x (1− x)p2j (x)

}2/9
n−2/9,

b∗JLN,j =

{
f (x)

16
√
π
√
x (1− x)q2j (x)

}2/9
n−2/9,

which yield the optimal MSEs

MSE∗
{
f̃TS,j (x)

}
∼
9
88/9

γ (c) p2/9j (x)
{

f (x)
2
√
π
√
x (1− x)

}8/9
n−8/9,

MSE∗
{
f̃JLN,j (x)

}
∼
9
88/9
q2/9j (x)

{
f (x)

2
√
π
√
x (1− x)

}8/9
n−8/9,

where

γ (c) =

{(
1+ c5/2

)
(1+ c)1/2 − 2

√
2c3/2

c1/4 (1+ c)1/2 (1− c)9/4

}8/9
.

Observe that the MSE-optimal smoothing parameters are O
(
n−2/9

)
= O

(
h∗2
)
, where h∗ is the MSE-optimal bandwidth for

fourth-order kernel estimators, or TS- or JLN-MBC estimators using symmetric second-order kernels. As a result, the optimal
MSEs of f̃TS,j (x) and f̃JLN,j (x) become O

(
n−8/9

)
, as with MBC estimation using the second-order kernels. This convergence

rate is faster than O
(
n−4/5

)
, the optimal convergence rate in the MSEs of f̂B (x) and f̂MB (x) for interior x. On the other hand,

for boundary x, theMSEs of f̃TS,j (x) and f̃JLN,j (x) areO
(
b4 + n−1b−1

)
. TheMSE-optimal smoothing parameter bF = O

(
n−1/5

)
achieves the optimal MSE of O

(
n−4/5

)
, which is also faster than O

(
n−2/3

)
, the optimal convergence rate in theMSEs of f̂B (x)

and f̂MB (x) for boundary x.
The undesirable convergence rate O

(
n−1b−1

)
over boundary regions does not affect the global properties of these

estimators. By the trimming argument in Chen (1999), mean integrated squared errors (MISEs) of the MBC estimators are

MISE
{
f̃TS,j (x)

}
=

b4

c2 (1− c)2

∫ 1

0
p2j (x) dx+

n−1b−1/2λ (c)
2
√
π

∫ 1

0

f (x)
√
x (1− x)

dx+ o
(
b4 + n−1b−1/2

)
,

MISE
{
f̃JLN,j (x)

}
= b4

∫ 1

0
q2j (x) dx+

n−1b−1/2

2
√
π

∫ 1

0

f (x)
√
x (1− x)

dx+ o
(
b4 + n−1b−1/2

)
,
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provided that all integrals are finite. MISE-optimal smoothing parameters are given by

b∗∗TS,j =
{
c2 (1− c)2 λ (c)

}2/9 {∫ 10 f (x) /√x (1− x)dx
16
√
π
∫ 1
0 p

2
j (x) dx

}2/9
n−2/9,

b∗∗JLN,j =

{∫ 1
0 f (x) /

√
x (1− x)dx

16
√
π
∫ 1
0 q

2
j (x) dx

}2/9
n−2/9.

Therefore, the optimal MISEs become

MISE∗∗
{
f̃TS,j (x)

}
∼
9
88/9

γ (c)
{∫ 1

0
p2j (x) dx

}1/9 { 1
2
√
π

∫ 1

0

f (x)
√
x (1− x)

dx
}8/9

n−8/9,

MISE∗∗
{
f̃JLN,j (x)

}
∼
9
88/9

{∫ 1

0
q2j (x) dx

}1/9 { 1
2
√
π

∫ 1

0

f (x)
√
x (1− x)

dx
}8/9

n−8/9.

Furthermore, the multiplier γ (c) in the optimal MISE for the TS-MBC estimator is minimized at c∗ ≈ 0.2636; this optimal
value is considered throughout.

2.3. Normalization

Neither f̃TS,j (x) nor f̃JLN,j (x) integrates to one. In general, MBC leads to lack of normalization, even if symmetric second-
order kernels are employed; see Section 2.2 in JLN, for example. While lack of normalization in f̃TS,j (x) and f̃JLN,j (x)may be
ignored in some applications, Gouriéroux and Monfort (2006), for example, argue that this issue should be resolved for the
estimation of recovery rate densities in credit risk modelling, and propose two renormalized beta kernel density estimators.
Taking the structures of f̃TS,j (x) and f̃JLN,j (x) into account, we adopt their ‘‘macro’’ approach to obtain the renormalized MBC
estimators

f̃ RTS,j (x) =
f̃TS,j (x)∫ 1

0 f̃TS,j (x) dx
,

f̃ RJLN,j (x) =
f̃JLN,j (x)∫ 1

0 f̃JLN,j (x) dx
.

Since

E
{∫ 1

0
f̃TS,j (x) dx

}
= 1+

b2

c (1− c)

∫ 1

0
pj (x) dx+ o

(
b2
)
,

E
{∫ 1

0
f̃JLN,j (x) dx

}
= 1+ b2

∫ 1

0
qj (x) dx+ o

(
b2
)
,

provided that pj (x) and qj (x) are integrable, biases of f̃ RTS,j (x) and f̃
R
JLN,j (x) can be approximated by

bias
{
f̃ RTS,j (x)

}
∼

1
c (1− c)

{
pj (x)−

∫ 1

0
pj (x) dx

}
b2,

bias
{
f̃ RJLN,j (x)

}
∼

{
qj (x)−

∫ 1

0
qj (x) dx

}
b2.

Their asymptotic variances are unaffected.

2.4. Further bias reduction

In principle, further bias reduction is possible after the regularity conditions are properly strengthened. Constructing a
multiplicative combination of (s+ 1) different density estimators, we can generalize the TS-MBC estimator f̃TS,j (x) as

f̃ (s)TS,j (x) =
s∏
r=0

{
f̂j,b/cr (x)

}αs,r
,

where c0 = 1, c1, . . . , cs ∈ (0, 1) are mutually different constants, and the exponent is

αs,r =
(−1)s csr
s∏

p=0,p6=r

(
cp − cr

) .
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Similarly, the sth iterated JLN-MBC estimator can be defined as

f̃ (s)JLN,j (x) = f̃
(s−1)
JLN,j (x)

{
1
n

n∑
i=1

K(j;x,b) (Xi)

f̃ (s−1)JLN,j (Xi)

}
,

where f̃ (0)JLN,j (x) = f̂j,b (x). Provided that the true density f is 2 (s+ 1) times continuously differentiable, for each of these
estimators, it can be shown that the order of magnitude in bias is O

(
bs+1

)
while the variance remains O

(
n−1b−1/2

)
and

O
(
n−1b−1

)
for interior and boundary x, respectively. In particular, var

{
f̃ (s)JLN,j (x)

}
is first-order asymptotically equivalent to

var
{
f̃ (0)JLN,j (x)

}
= var

{
f̂j,b (x)

}
for interior x. Their optimalMSEs areO

(
n−(4s+4)/(4s+5)

)
andO

(
n−(2s+2)/(2s+3)

)
for interior and

boundary x, respectively. Accordingly, as the number of iterations increases, global convergence rates of the iterated MBC
estimators when best implemented can be arbitrarily close to the parametric one. However, it is doubtful whether there is
much gain in practice from these estimators, and thus we do not pursue this issue any further.

3. Finite sample performance

3.1. Smoothing parameter selection

Choosing the smoothing parameter b is an important practical issue. In the spirit of Jones and Henderson (2007b), we
propose a plug-in method with a beta density used as a reference. The plug-in smoothing parameters for f̃TS,MB (x) and
f̃JLN,MB (x) (called ‘‘beta-referenced smoothing parameters’’ hereafter) are defined as theminimizers of asymptotic weighted
mean integrated squared errors (AWMISEs)

b̂TS.MB = argmin
b
AWMISE

{
f̃TS,MB (x)

}
= argmin

b

b4

c2 (1− c)2

∫ 1

0
p̃2MB (x) w (x) dx+

n−1b−1/2λ (c)
2
√
π

∫ 1

0

g (x)
√
x (1− x)

w (x) dx,

b̂JLN,MB = argmin
b
AWMISE

{
f̃JLN,MB (x)

}
= argmin

b
b4
∫ 1

0
q̃2MB (x) w (x) dx+

n−1b−1/2

2
√
π

∫ 1

0

g (x)
√
x (1− x)

w (x) dx,

where g (x) = xα−1 (1− x)β−1 1 {0 ≤ x ≤ 1} /B (α, β) is the density function for the beta distribution with parameters
(α, β), p̃MB (x) and q̃MB (x) can be obtained by replacing f (x) with g (x) in pMB (x) and qMB (x), respectively, and w (x) is
a weighting function that ensures finiteness of integrals. Because of the expressions of p̃MB (x) and q̃MB (x), we choose
w (x) = x5 (1− x)5. In practice, the parameters (α, β) are replaced by their method of moments estimates

(
α̂, β̂

)
.

Analytical expressions of b̂TS,MB and b̂JLN,MB, as well as the beta-referenced smoothing parameter for f̂MB (x) in Jones and
Henderson (2007b), denoted as b̂MB, are given in the Appendix.
We do not pursue the beta-referenced smoothing parameter for f̃TS,B (x) or f̃JLN,B (x); since extra terms are involved in

pB (x) and qB (x), the minimizers of their AWMISEs take much more complicated forms than b̂TS,MB and b̂JLN,MB. From the
viewpoint of practical relevance, these smoothing parameters are simply employed for f̃TS,B (x) and f̃JLN,B (x) in the Monte
Carlo simulations below. Similarly, b̂MB is chosen as the smoothing parameter for f̂B (x). Strictly speaking, b̂TS,MB and b̂JLN,MB
are not AWMISE-optimal choices for f̃TS,B (x) and f̃JLN,B (x). However,when b̂TS,MB and b̂JLN,MB are chosen, optimal convergence
rates inMISEs for these estimators can be still achieved, and theMonte Carlo simulations indicate that they often outperform
f̃TS,MB (x) and f̃JLN,MB (x).

3.2. Monte Carlo setup

Monte Carlo simulations compare the finite sample performance of the following 7 classes of estimators, or 14 estimators
in total: (i) bias-uncorrected estimator f̂j (x); (ii) ‘‘micro’’ estimator f̂ rj (x) in Gouriéroux andMonfort (2006); (iii) ‘‘macro’’ (or
renormalized) estimator f̂ Rj (x) in Gouriéroux and Monfort (2006); (iv) TS-MBC estimator f̃TS,j (x); (v) renormalized TS-MBC
estimator f̃ RTS,j (x); (vi) JLN-MBC estimator f̃JLN,j (x); and (vii) renormalized JLN-MBC estimator f̃

R
JLN,j (x), where ‘‘micro’’ and

‘‘macro’’ estimators are defined as

f̂ rj (x) =
1
n

n∑
i=1

K(j;x,b) (Xi)∫ 1
0 K(j;x,b) (Xi) dx

,
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Table 1
True distributions considered in Monte Carlo simulations.

Distribution Density function f (x) , x ∈ [0, 1] Shape

1. U [0, 1] 1 Horizontal
2. B (3, 1) 3x2 Increasing
3. Truncated Exp (1/2) 2 exp (−2x) / {1− exp (−2)} Decreasing
4. Truncated N (0, 1/4) 2φ (2x) / {Φ (2)− 1/2} Decreasing
5. B (3, 3) 30x2 (1− x)2 Bell-shaped
6. B (1/2, 1/2) 1/

{
π
√
x (1− x)

}
U-shaped

7. (1/2) B (3, 1)+ (1/2) B (1, 3) (3/2)
{
x2 + (1− x)2

}
U-shaped

8. B (2, 4) 20x (1− x)3 Unimodal, right-skewed
9. (1/2) B (5, 2)+ (1/2) B (2, 5) 15

{
x4 (1− x)+ x (1− x)4

}
Bimodal, symmetric

10. (1/4) B (8, 2)+ (3/4) B (2, 8) 18
{
x7 (1− x)+ 3x (1− x)7

}
Bimodal, right-skewed

f̂ Rj (x) =
f̂j (x)∫ 1

0 f̂j (x) dx
,

respectively. The value of the constant c in each TS-MBC estimator is set equal to the MISE-optimal c∗ = 0.2636. Ten
true distributions are considered, as listed in Table 1, and for each distribution, 1000 data sets of sample size n = 100 or
n = 200 are simulated. For each simulated data set, the smoothing parameter is chosen via the following twomethods: (i) a
simple ‘‘rule-of-thumb’’ method (see Renault and Scaillet, 2004, and Gouriéroux and Monfort, 2006) such that b̂plain =
σ̂n−2/5 and b̂mbc = σ̂n−2/9 for all bias-uncorrected and MBC estimators, respectively, where σ̂ is the sample standard
deviation; and (ii) the beta-referenced method described in the previous section, where b̂MB, b̂TS,MB and b̂JLN,MB are applied
for all bias-uncorrected, TS- and JLN-MBC estimators, respectively. The purposes of using two plug-in smoothing parameters
for a given density estimator are to speed up computation and to see how the beta-referenced method can improve the
performance of each estimator in comparison with the rule-of-thumb method. Since the beta-referenced method often
picks up a large value, estimated smoothing parameter values are trimmed at 1 so that their lengths may not exceed that of
the support. All density estimates are evaluated on an equally spaced grid of 999 points {0.001, 0.002, . . . , 0.999}. For each
estimator f̄ ,

ISE
(
f̄
)
=

∫ 1

0

{
f̄ (x)− f (x)

}2
dx ≈

1
1000

999∑
j=1

{
f̄
(
j

1000

)
− f

(
j

1000

)}2
is computed over the grids, and then it is averaged over 1000 replications. Averages of integrated squaredbiases and standard
errors (defined as square roots of the estimates of asymptotic integrated variances) are also computed for reference.

3.3. Simulation results

Monte Carlo results, including descriptive statistics of smoothing parameters, are given in Tables 2–5. Observe that the
results are qualitatively similar across two sample sizes. Influences of trimming for smoothing parameters are limited in the
sense that there are very few numbers of trimmed smoothing parameter estimates. Frequencies of trimming appear to be
large for Distribution 1 (=U [0, 1]). However, the bias-uncorrected and its renormalized estimators have no asymptotic
biases (and thus bias correction is unnecessary). For this distribution, simply setting b = O (1) (i.e. oversmoothing) is
optimal, and numbers of trimmed smoothing parameters are not an issue.
Comparing TS- and JLN-MBC estimators with their corresponding bias-uncorrected estimators, we find that JLN-MBC

estimators often improve the average ISE, whereas results are mixed for TS-MBC estimators. Even in the absence of
substantial improvement in the average ISE, f̃JLN,B (x) tends to reduce the average integrated squared bias from f̂B (x). In
addition, as suggested by the asymptotic results, TS-MBC estimators are less efficient than JLN-MBC estimators in that
standard errors of the former are larger due to the extra constant λ (c) ≥ 1. Superior performance of JLN-MBC over
TS-MBC is consistent with the simulation results reported in Jones and Signorini (1997).
However, the results do not necessarily support superiority of the modified beta kernel over the beta kernel. In addition,

the effect of normalization appears to be marginal in many cases. This is due to the fact that renormalization induces an
extra bias term. Since the sign of this term depends on the true density, it may or may not lead to a less biased estimate.
Comparing two smoothing parameter choicemethods for a given estimator, we also find that for JLN-MBC estimators, the

beta-referencedmethod works better for Distributions 1, 2, 3, 4, 6, and 7. For other distributions, the rule-of-thumbmethod
tends to perform better, but there is not much gain in the average ISE unless the true density is bimodal (e.g. Distributions
9 and 10). In short, as far as the shape of the true density does not deviate considerably from that of a beta distribution, the
beta-referencedmethod works well for JLN-MBC estimators. In contrast, the rule-of-thumbmethod tends to perform better
for TS-MBC estimators. This finding is revisited shortly, in relation to poor performance of f̃TS,MB (x). The results are mixed
for bias-uncorrected estimators.
Fig. 1 is prepared to visualize how two classes of MBC techniques work. Each panel displays average plots of density

estimates by bias-uncorrected beta (f̂B (x), denoted ‘‘Plain’’ in the legend), beta TS-MBC (f̂TS,B (x)), and beta JLN-MBC
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Table 2
Average ISE computed on 1000 replications (n = 100; Distributions 1–5).

True distribution
1 2 3 4 5
ROT BR ROT BR ROT BR ROT BR ROT BR

Density estimator:

f̂B
0.0283 0.0072 0.0382 0.0408 0.0321 0.0416 0.0298 0.0382 0.0319 0.0338
(0.0000) (0.0000) (0.0030) (0.0202) (0.0027) (0.0256) (0.0009) (0.0281) (0.0073) (0.0112)
[0.2006] [0.1217] [0.2316] [0.1766] [0.2103] [0.1456] [0.2073] [0.1299] [0.1961] [0.1865]

f̂MB
0.0308 0.0057 0.0410 0.0324 0.0335 0.0451 0.0310 0.0494 0.0255 0.0249
(0.0000) (0.0000) (0.0009) (0.0093) (0.0010) (0.0207) (0.0001) (0.0337) (0.0033) (0.0054)
[0.2004] [0.1217] [0.2342] [0.1796] [0.2122] [0.1472] [0.2069] [0.1297] [0.1892] [0.1787]

f̂ rB
0.0442 0.0187 0.0659 0.0484 0.0516 0.0369 0.0472 0.0396 0.0328 0.0362
(0.0085) (0.0072) (0.0195) (0.0224) (0.0135) (0.0129) (0.0118) (0.0260) (0.0094) (0.0144)
[0.2073] [0.1248] [0.2417] [0.1871] [0.2195] [0.1533] [0.2137] [0.1333] [0.1935] [0.1834]

f̂ rMB
0.0322 0.0068 0.0469 0.0393 0.0384 0.0368 0.0332 0.0436 0.0239 0.0213
(0.0031) (0.0002) (0.0095) (0.0197) (0.0077) (0.0191) (0.0038) (0.0289) (0.0009) (0.0015)
[0.1986] [0.1222] [0.2305] [0.1776] [0.2093] [0.1473] [0.2051] [0.1302] [0.1915] [0.1813]

f̂ RB
0.0282 0.0068 0.0384 0.0359 0.0323 0.0394 0.0297 0.0383 0.0324 0.0352
(0.0000) (0.0000) (0.0017) (0.0137) (0.0021) (0.0219) (0.0009) (0.0284) (0.0091) (0.0137)
[0.2007] [0.1217] [0.2333] [0.1792] [0.2116] [0.1475] [0.2073] [0.1297] [0.1933] [0.1832]

f̂ RMB
0.0308 0.0056 0.0395 0.0317 0.0326 0.0446 0.0309 0.0494 0.0246 0.0229
(0.0000) (0.0000) (0.0010) (0.0105) (0.0011) (0.0212) (0.0001) (0.0337) (0.0012) (0.0022)
[0.2006] [0.1217] [0.2331] [0.1786] [0.2115] [0.1470] [0.2071] [0.1297] [0.1918] [0.1816]

f̃TS,B
0.0218 0.0087 0.0287 0.0325 0.0250 0.0283 0.0230 0.0306 0.0315 0.0428
(0.0000) (0.0000) (0.0016) (0.0060) (0.0023) (0.0097) (0.0007) (0.0184) (0.0126) (0.0064)
[0.1852] [0.1363] [0.2153] [0.1994] [0.1943] [0.1654] [0.1922] [0.1414] [0.1850] [0.2050]

f̃TS,MB
0.0250 0.0068 0.0428 0.0420 0.0335 0.0369 0.0266 0.0437 0.0206 0.0332
(0.0000) (0.0001) (0.0097) (0.0112) (0.0069) (0.0057) (0.0017) (0.0210) (0.0042) (0.0022)
[0.1851] [0.1366] [0.2209] [0.2054] [0.1981] [0.1689] [0.1925] [0.1423] [0.1749] [0.1981]

f̃ RTS,B
0.0216 0.0083 0.0288 0.0306 0.0249 0.0278 0.0226 0.0314 0.0326 0.0439
(0.0000) (0.0000) (0.0014) (0.0048) (0.0018) (0.0082) (0.0008) (0.0192) (0.0157) (0.0079)
[0.1852] [0.1363] [0.2156] [0.2002] [0.1953] [0.1666] [0.1915] [0.1406] [0.1800] [0.2011]

f̃ RTS,MB
0.0248 0.0066 0.0304 0.0305 0.0274 0.0323 0.0244 0.0436 0.0192 0.0310
(0.0001) (0.0000) (0.0031) (0.0061) (0.0043) (0.0057) (0.0012) (0.0226) (0.0021) (0.0014)
[0.1851] [0.1363] [0.2155] [0.1998] [0.1951] [0.1663] [0.1915] [0.1409] [0.1779] [0.1997]

f̃JLN,B
0.0269 0.0144 0.0330 0.0234 0.0284 0.0215 0.0270 0.0167 0.0233 0.0270
(0.0001) (0.0000) (0.0005) (0.0043) (0.0007) (0.0036) (0.0001) (0.0041) (0.0028) (0.0050)
[0.1630] [0.1269] [0.1897] [0.1560] [0.1718] [0.1432] [0.1686] [0.1296] [0.1561] [0.1502]

f̃JLN,MB
0.0257 0.0116 0.0320 0.0238 0.0274 0.0227 0.0258 0.0168 0.0228 0.0268
(0.0001) (0.0000) (0.0017) (0.0084) (0.0018) (0.0059) (0.0002) (0.0057) (0.0037) (0.0066)
[0.1630] [0.1270] [0.1892] [0.1552] [0.1717] [0.1429] [0.1682] [0.1291] [0.1527] [0.1465]

f̃ RJLN,B
0.0272 0.0144 0.0341 0.0215 0.0289 0.0212 0.0274 0.0167 0.0235 0.0276
(0.0000) (0.0000) (0.0001) (0.0004) (0.0002) (0.0018) (0.0001) (0.0035) (0.0023) (0.0045)
[0.1635] [0.1271] [0.1915] [0.1592] [0.1731] [0.1450] [0.1692] [0.1303] [0.1567] [0.1505]

f̃ RJLN,MB
0.0260 0.0117 0.0326 0.0223 0.0276 0.0220 0.0262 0.0159 0.0235 0.0258
(0.0001) (0.0000) (0.0017) (0.0063) (0.0017) (0.0048) (0.0002) (0.0043) (0.0021) (0.0036)
[0.1634] [0.1272] [0.1905] [0.1576] [0.1723] [0.1441] [0.1689] [0.1304] [0.1559] [0.1500]

Smoothing parameter:
Plain:
Mean 0.0456 0.4434 0.0304 0.0891 0.0414 0.2049 0.0395 0.3090 0.0299 0.0383
Std. Dev. 0.0021 0.4960 0.0022 0.0282 0.0026 0.1758 0.0024 0.2020 0.0017 0.0064
#{Trimmed} 0 60 0 0 0 3 0 12 0 0
TS-MBC:
Mean 0.1034 0.3880 0.0690 0.1034 0.0939 0.2007 0.0896 0.3549 0.0677 0.0537
Std. Dev. 0.0047 0.1661 0.0050 0.0562 0.0059 0.1169 0.0055 0.1619 0.0039 0.0337
#{Trimmed} 0 5 0 0 0 2 0 3 0 0
JLN-MBC:
Mean 0.1034 0.3030 0.0690 0.1461 0.0939 0.2019 0.0896 0.2724 0.0677 0.0848
Std. Dev. 0.0047 0.1154 0.0050 0.0274 0.0059 0.0723 0.0055 0.0847 0.0039 0.0256
#{Trimmed} 0 3 0 0 0 1 0 1 0 0

Note: ‘‘ROT’’ and ‘‘BR’’ in column headings denote ‘‘rule-of-thumb’’ and ‘‘beta-referenced’’ smoothing parameter choice methods. Numbers in parentheses
and brackets for density estimators are averages of integrated squared biases and standard errors (defined as square roots of the estimates of asymptotic
integrated variances). ‘‘Mean’’, ‘‘Std. Dev.’’, and ‘‘#{Trimmed}’’ for smoothing parameters are averages, standard deviations, and numbers of smoothing
parameters trimmed at one.

(f̂JLN,B (x)) estimators for n = 100, where average is taken over 1000 replications for each grid. For comparison, results
from two smoothing parameters are provided for a given distribution. We can see that if the bias-uncorrected estimator
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Table 3
Average ISE computed on 1000 replications (n = 100; Distributions 6–10).

True distribution
6 7 8 9 10
ROT BR ROT BR ROT BR ROT BR ROT BR

Density estimator:

f̂B
0.2801 0.3090 0.0310 0.0255 0.0384 0.0449 0.0387 0.0542 0.1004 0.1336
(0.2524) (0.2837) (0.0023) (0.0104) (0.0102) (0.0210) (0.0122) (0.0446) (0.0728) (0.1147)
[0.2015] [0.1843] [0.2029] [0.1502] [0.2106] [0.1906] [0.1977] [0.1398] [0.2089] [0.1717]

f̂MB
0.2850 0.3184 0.0337 0.0271 0.0331 0.0379 0.0356 0.0604 0.1149 0.1657
(0.2496) (0.2837) (0.0014) (0.0100) (0.0063) (0.0155) (0.0101) (0.0510) (0.0861) (0.1448)
[0.2137] [0.1948] [0.2060] [0.1528] [0.2044] [0.1844] [0.1920] [0.1379] [0.2068] [0.1738]

f̂ rB
0.1382 0.1533 0.0506 0.0291 0.0430 0.0568 0.0453 0.0686 0.1140 0.1545
(0.0700) (0.0893) (0.0112) (0.0051) (0.0148) (0.0315) (0.0183) (0.0586) (0.0837) (0.1341)
[0.2370] [0.2174] [0.2136] [0.1599] [0.2092] [0.1891] [0.1968] [0.1391] [0.2110] [0.1758]

f̂ rMB
0.2422 0.2708 0.0377 0.0236 0.0315 0.0356 0.0360 0.0637 0.1222 0.1637
(0.2009) (0.2325) (0.0071) (0.0097) (0.0049) (0.0138) (0.0114) (0.0522) (0.0957) (0.1467)
[0.2177] [0.1996] [0.2028] [0.1527] [0.2051] [0.1848] [0.1915] [0.1369] [0.2029] [0.1691]

f̂ RB
0.2550 0.2815 0.0316 0.0243 0.0385 0.0461 0.0375 0.0527 0.0969 0.1358
(0.2194) (0.2482) (0.0015) (0.0079) (0.0115) (0.0234) (0.0124) (0.0442) (0.0699) (0.1165)
[0.2139] [0.1966] [0.2051] [0.1533] [0.2083] [0.1877] [0.1951] [0.1371] [0.2080] [0.1723]

f̂ RMB
0.2842 0.3169 0.0326 0.0267 0.0327 0.0366 0.0359 0.0602 0.1086 0.1505
(0.2483) (0.2817) (0.0014) (0.0102) (0.0048) (0.0133) (0.0097) (0.0510) (0.0809) (0.1315)
[0.2149] [0.1966] [0.2047] [0.1524] [0.2062] [0.1861] [0.1931] [0.1372] [0.2051] [0.1702]

f̃TS,B
0.3222 0.2971 0.0257 0.0255 0.0411 0.0496 0.0448 0.0622 0.1342 0.1402
(0.3015) (0.2687) (0.0035) (0.0069) (0.0189) (0.0070) (0.0239) (0.0557) (0.1125) (0.1175)
[0.1816] [0.1947] [0.1863] [0.1658] [0.1989] [0.2284] [0.1859] [0.1367] [0.1970] [0.1931]

f̃TS,MB
0.3412 0.3252 0.0304 0.0301 0.0363 0.0456 0.0491 0.0663 0.1969 0.2060
(0.3135) (0.2815) (0.0038) (0.0067) (0.0147) (0.0046) (0.0276) (0.0622) (0.1722) (0.1778)
[0.1929] [0.2083] [0.1909] [0.1693] [0.1918] [0.2228] [0.1812] [0.1363] [0.2013] [0.1979]

f̃ RTS,B
0.2919 0.2722 0.0257 0.0248 0.0406 0.0493 0.0431 0.0599 0.1247 0.1318
(0.2646) (0.2354) (0.0022) (0.0047) (0.0206) (0.0076) (0.0239) (0.0544) (0.1044) (0.1104)
[0.1944] [0.2072] [0.1890] [0.1690] [0.1942] [0.2252] [0.1825] [0.1336] [0.1949] [0.1913]

f̃ RTS,MB
0.3399 0.3220 0.0276 0.0284 0.0361 0.0456 0.0492 0.0651 0.1431 0.1505
(0.3129) (0.2822) (0.0032) (0.0069) (0.0143) (0.0045) (0.0276) (0.0614) (0.1240) (0.1288)
[0.1933] [0.2070] [0.1881] [0.1679] [0.1923] [0.2232] [0.1814] [0.1342] [0.1923] [0.1888]

f̃JLN,B
0.2787 0.2617 0.0291 0.0262 0.0316 0.0373 0.0383 0.0512 0.1011 0.1163
(0.2519) (0.2280) (0.0014) (0.0029) (0.0070) (0.0136) (0.0137) (0.0383) (0.0761) (0.0951)
[0.1648] [0.1739] [0.1659] [0.1495] [0.1693] [0.1588] [0.1603] [0.1312] [0.1706] [0.1601]

f̃JLN,MB
0.3182 0.3007 0.0270 0.0255 0.0346 0.0416 0.0433 0.0615 0.1123 0.1324
(0.2948) (0.2693) (0.0022) (0.0043) (0.0105) (0.0185) (0.0202) (0.0511) (0.0902) (0.1121)
[0.1663] [0.1758] [0.1661] [0.1496] [0.1664] [0.1558] [0.1585] [0.1308] [0.1692] [0.1593]

f̃ RJLN,B
0.2555 0.2423 0.0298 0.0266 0.0319 0.0376 0.0380 0.0505 0.1089 0.1265
(0.2210) (0.1996) (0.0006) (0.0017) (0.0067) (0.0133) (0.0139) (0.0383) (0.0825) (0.1035)
[0.1748] [0.1838] [0.1678] [0.1517] [0.1696] [0.1590] [0.1593] [0.1296] [0.1722] [0.1622]

f̃ RJLN,MB
0.3103 0.2952 0.0272 0.0256 0.0351 0.0409 0.0436 0.0613 0.1170 0.1357
(0.2830) (0.2590) (0.0021) (0.0041) (0.0091) (0.0158) (0.0200) (0.0511) (0.0941) (0.1147)
[0.1724] [0.1817] [0.1667] [0.1504] [0.1689] [0.1586] [0.1589] [0.1301] [0.1703] [0.1600]

Smoothing parameter:
Plain:
Mean 0.0559 0.0771 0.0502 0.1802 0.0282 0.0459 0.0424 0.2372 0.0453 0.1035
Std. Dev. 0.0021 0.0159 0.0020 0.1420 0.0019 0.0124 0.0019 0.1892 0.0027 0.0256
#{Trimmed} 0 0 0 7 0 0 0 10 0 0
TS-MBC:
Mean 0.1268 0.1048 0.1137 0.1892 0.0639 0.0433 0.0961 0.3794 0.1026 0.1133
Std. Dev. 0.0048 0.0199 0.0045 0.0852 0.0042 0.0323 0.0043 0.1169 0.0061 0.0208
#{Trimmed} 0 0 0 1 0 0 0 3 0 0
JLN-MBC:
Mean 0.1268 0.1084 0.1137 0.1774 0.0639 0.0879 0.0961 0.2440 0.1026 0.1355
Std. Dev. 0.0048 0.0133 0.0045 0.0606 0.0042 0.0200 0.0043 0.0623 0.0061 0.0199
#{Trimmed} 0 0 0 0 0 0 0 0 0 0

Note: ‘‘ROT’’ and ‘‘BR’’ in column headings denote ‘‘rule-of-thumb’’ and ’’beta-referenced’’ smoothing parameter choice methods. Numbers in parentheses
and brackets for density estimators are averages of integrated squared biases and standard errors (defined as square roots of the estimates of asymptotic
integrated variances). ‘‘Mean’’, ‘‘Std. Dev.’’, and ‘‘#{Trimmed}’’ for smoothing parameters are averages, standard deviations, and numbers of smoothing
parameters trimmed at one.

underestimates (overestimates) the density, JLN-MBC corrects the estimate in an upward (downward) direction, as reported
in Hirukawa (2006). Such a bias correction mechanism is not obvious for TS-MBC.
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Table 4
Average ISE computed on 1000 replications (n = 200; Distributions 1–5).

True distribution
1 2 3 4 5
ROT BR ROT BR ROT BR ROT BR ROT BR

Density estimator:

f̂B
0.0172 0.0036 0.0231 0.0257 0.0198 0.0270 0.0182 0.0296 0.0192 0.0202
(0.0000) (0.0000) (0.0020) (0.0146) (0.0019) (0.0176) (0.0006) (0.0245) (0.0044) (0.0069)
[0.1520] [0.0860] [0.1757] [0.1323] [0.1596] [0.1109] [0.1569] [0.0942] [0.1474] [0.1397]

f̂MB
0.0188 0.0029 0.0241 0.0173 0.0206 0.0246 0.0191 0.0347 0.0156 0.0150
(0.0000) (0.0000) (0.0003) (0.0053) (0.0006) (0.0113) (0.0001) (0.0260) (0.0020) (0.0032)
[0.1519] [0.0860] [0.1775] [0.1345] [0.1608] [0.1122] [0.1566] [0.0941] [0.1433] [0.1349]

f̂ rB
0.0283 0.0135 0.0461 0.0389 0.0349 0.0261 0.0305 0.0323 0.0199 0.0217
(0.0070) (0.0072) (0.0191) (0.0252) (0.0119) (0.0132) (0.0092) (0.0254) (0.0056) (0.0089)
[0.1567] [0.0882] [0.1828] [0.1399] [0.1660] [0.1168] [0.1613] [0.0969] [0.1459] [0.1378]

f̂ rMB
0.0204 0.0038 0.0293 0.0276 0.0255 0.0227 0.0214 0.0299 0.0147 0.0129
(0.0026) (0.0002) (0.0070) (0.0168) (0.0066) (0.0137) (0.0033) (0.0222) (0.0005) (0.0008)
[0.1504] [0.0864] [0.1748] [0.1327] [0.1586] [0.1118] [0.1552] [0.0945] [0.1447] [0.1365]

f̂ RB
0.0171 0.0034 0.0228 0.0215 0.0198 0.0249 0.0181 0.0299 0.0197 0.0214
(0.0000) (0.0000) (0.0011) (0.0097) (0.0015) (0.0148) (0.0006) (0.0248) (0.0055) (0.0086)
[0.1521] [0.0860] [0.1768] [0.1340] [0.1604] [0.1122] [0.1569] [0.0940] [0.1458] [0.1378]

f̂ RMB
0.0188 0.0029 0.0234 0.0173 0.0202 0.0244 0.0190 0.0347 0.0149 0.0135
(0.0000) (0.0000) (0.0004) (0.0061) (0.0007) (0.0117) (0.0001) (0.0260) (0.0007) (0.0011)
[0.1520] [0.0860] [0.1768] [0.1337] [0.1604] [0.1119] [0.1568] [0.0941] [0.1448] [0.1367]

f̃TS,B
0.0123 0.0045 0.0161 0.0174 0.0145 0.0168 0.0130 0.0242 0.0194 0.0249
(0.0000) (0.0000) (0.0012) (0.0040) (0.0017) (0.0067) (0.0005) (0.0172) (0.0088) (0.0051)
[0.1361] [0.0968] [0.1580] [0.1458] [0.1429] [0.1229] [0.1410] [0.1010] [0.1347] [0.1462]

f̃TS,MB
0.0142 0.0035 0.0245 0.0242 0.0200 0.0217 0.0150 0.0344 0.0117 0.0178
(0.0000) (0.0000) (0.0065) (0.0102) (0.0051) (0.0063) (0.0010) (0.0183) (0.0024) (0.0013)
[0.1360] [0.0969] [0.1617] [0.1502] [0.1453] [0.1256] [0.1410] [0.1015] [0.1283] [0.1415]

f̃ RTS,B
0.0122 0.0042 0.0160 0.0162 0.0143 0.0161 0.0128 0.0250 0.0208 0.0263
(0.0000) (0.0000) (0.0010) (0.0032) (0.0014) (0.0055) (0.0006) (0.0180) (0.0111) (0.0063)
[0.1361] [0.0968] [0.1583] [0.1464] [0.1435] [0.1238] [0.1406] [0.1004] [0.1316] [0.1437]

f̃ RTS,MB
0.0141 0.0034 0.0174 0.0153 0.0165 0.0181 0.0141 0.0348 0.0107 0.0162
(0.0000) (0.0000) (0.0020) (0.0040) (0.0032) (0.0049) (0.0008) (0.0197) (0.0012) (0.0007)
[0.1360] [0.0968] [0.1584] [0.1462] [0.1435] [0.1236] [0.1406] [0.1006] [0.1301] [0.1426]

f̃JLN,B
0.0151 0.0073 0.0182 0.0131 0.0161 0.0125 0.0152 0.0096 0.0133 0.0148
(0.0000) (0.0000) (0.0003) (0.0032) (0.0005) (0.0024) (0.0001) (0.0034) (0.0017) (0.0031)
[0.1199] [0.0899] [0.1395] [0.1137] [0.1264] [0.1059] [0.1239] [0.0933] [0.1144] [0.1097]

f̃JLN,MB
0.0147 0.0060 0.0178 0.0139 0.0160 0.0141 0.0148 0.0094 0.0130 0.0140
(0.0001) (0.0000) (0.0008) (0.0060) (0.0013) (0.0045) (0.0001) (0.0040) (0.0020) (0.0038)
[0.1199] [0.0899] [0.1392] [0.1132] [0.1264] [0.1058] [0.1236] [0.0930] [0.1124] [0.1074]

f̃ RJLN,B
0.0152 0.0072 0.0185 0.0110 0.0162 0.0120 0.0153 0.0094 0.0132 0.0149
(0.0000) (0.0000) (0.0000) (0.0003) (0.0002) (0.0013) (0.0000) (0.0029) (0.0013) (0.0027)
[0.1202] [0.0900] [0.1405] [0.1156] [0.1271] [0.1070] [0.1241] [0.0937] [0.1148] [0.1100]

f̃ RJLN,MB
0.0148 0.0060 0.0180 0.0128 0.0160 0.0138 0.0149 0.0085 0.0132 0.0130
(0.0000) (0.0000) (0.0009) (0.0048) (0.0012) (0.0041) (0.0001) (0.0030) (0.0012) (0.0022)
[0.1201] [0.0900] [0.1399] [0.1146] [0.1267] [0.1064] [0.1240] [0.0938] [0.1142] [0.1095]

Smoothing parameter:
Plain:
Mean 0.0346 0.4448 0.0232 0.0699 0.0315 0.1439 0.0300 0.2637 0.0227 0.0291
Std. Dev. 0.0011 0.3946 0.0012 0.0146 0.0014 0.0950 0.0013 0.1340 0.0009 0.0034
#{Trimmed} 0 62 0 0 0 2 0 7 0 0
TS-MBC:
Mean 0.0887 0.3805 0.0595 0.0859 0.0807 0.1540 0.0770 0.3326 0.0582 0.0481
Std. Dev. 0.0029 0.1624 0.0031 0.0324 0.0036 0.0625 0.0034 0.1334 0.0024 0.0285
#{Trimmed} 0 10 0 0 0 0 0 0 0 0
JLN-MBC:
Mean 0.0887 0.3023 0.0595 0.1303 0.0807 0.1657 0.0770 0.2503 0.0582 0.0716
Std. Dev. 0.0029 0.1137 0.0031 0.0179 0.0036 0.0467 0.0034 0.0635 0.0024 0.0145
#{Trimmed} 0 2 0 0 0 0 0 0 0 0

Note: ‘‘ROT’’ and ‘‘BR’’ in column headings denote ‘‘rule-of-thumb’’ and ‘‘beta-referenced’’ smoothing parameter choice methods. Numbers in parentheses
and brackets for density estimators are averages of integrated squared biases and standard errors (defined as square roots of the estimates of asymptotic
integrated variances). ‘‘Mean’’, ‘‘Std. Dev.’’, and ‘‘#{Trimmed}’’ for smoothing parameters are averages, standard deviations, and numbers of smoothing
parameters trimmed at one.

Tables 2–5 also indicate that either the modified beta TS-MBC estimator f̃TS,MB (x) or the ‘‘micro’’ beta estimator f̂ rB (x)
consistently performs inferiorly. The reasons for their poor performance can be explained as follows. First, when it comes
to a large bias in f̃TS,MB (x), a TS-MBC estimator depends on two smoothing parameters b and b/c. Controlling both b and b/c
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Table 5
Average ISE computed on 1000 replications (n = 200; Distributions 6–10).

True distribution
6 7 8 9 10
ROT BR ROT BR ROT BR ROT BR ROT BR

Density estimator:

f̂B
0.2356 0.2662 0.0184 0.0168 0.0237 0.0280 0.0247 0.0457 0.0794 0.1077
(0.2186) (0.2507) (0.0015) (0.0080) (0.0064) (0.0141) (0.0084) (0.0393) (0.0629) (0.0969)
[0.1552] [0.1421] [0.1544] [0.1148] [0.1585] [0.1431] [0.1486] [0.1064] [0.1574] [0.1307]

f̂MB
0.2355 0.2691 0.0198 0.0172 0.0198 0.0219 0.0219 0.0514 0.0884 0.1329
(0.2133) (0.2476) (0.0007) (0.0068) (0.0033) (0.0090) (0.0061) (0.0446) (0.0714) (0.1214)
[0.1650] [0.1508] [0.1565] [0.1169] [0.1544] [0.1386] [0.1444] [0.1047] [0.1548] [0.1313]

f̂ rB
0.0946 0.1068 0.0337 0.0206 0.0262 0.0353 0.0287 0.0619 0.0862 0.1263
(0.0539) (0.0694) (0.0112) (0.0079) (0.0091) (0.0208) (0.0123) (0.0548) (0.0686) (0.1152)
[0.1821] [0.1674] [0.1619] [0.1222] [0.1576] [0.1420] [0.1480] [0.1060] [0.1584] [0.1331]

f̂ rMB
0.1918 0.2219 0.0237 0.0178 0.0187 0.0196 0.0221 0.0551 0.0968 0.1381
(0.1668) (0.1986) (0.0057) (0.0097) (0.0023) (0.0073) (0.0067) (0.0465) (0.0810) (0.1278)
[0.1675] [0.1537] [0.1540] [0.1162] [0.1550] [0.1390] [0.1443] [0.1039] [0.1526] [0.1278]

f̂ RB
0.2106 0.2383 0.0185 0.0155 0.0239 0.0291 0.0242 0.0448 0.0752 0.1073
(0.1891) (0.2183) (0.0010) (0.0060) (0.0073) (0.0157) (0.0086) (0.0390) (0.0591) (0.0966)
[0.1640] [0.1509] [0.1558] [0.1169] [0.1571] [0.1413] [0.1470] [0.1044] [0.1566] [0.1306]

f̂ RMB
0.2350 0.2681 0.0192 0.0169 0.0194 0.0207 0.0219 0.0514 0.0857 0.1209
(0.2127) (0.2466) (0.0007) (0.0070) (0.0024) (0.0073) (0.0058) (0.0447) (0.0690) (0.1101)
[0.1655] [0.1516] [0.1557] [0.1164] [0.1556] [0.1399] [0.1453] [0.1043] [0.1543] [0.1290]

f̃TS,B
0.2916 0.2639 0.0146 0.0158 0.0269 0.0276 0.0320 0.0563 0.1154 0.1195
(0.2799) (0.2478) (0.0026) (0.0057) (0.0144) (0.0057) (0.0199) (0.0523) (0.1033) (0.1071)
[0.1348] [0.1451] [0.1374] [0.1228] [0.1451] [0.1635] [0.1359] [0.1017] [0.1447] [0.1424]

f̃TS,MB
0.3087 0.2867 0.0174 0.0185 0.0231 0.0250 0.0349 0.0622 0.1649 0.1730
(0.2927) (0.2617) (0.0029) (0.0052) (0.0110) (0.0036) (0.0226) (0.0592) (0.1512) (0.1583)
[0.1440] [0.1558] [0.1409] [0.1255] [0.1400] [0.1593] [0.1321] [0.1012] [0.1469] [0.1450]

f̃ RTS,B
0.2607 0.2376 0.0142 0.0147 0.0270 0.0277 0.0311 0.0545 0.1041 0.1089
(0.2454) (0.2169) (0.0017) (0.0039) (0.0156) (0.0061) (0.0199) (0.0510) (0.0929) (0.0975)
[0.1438] [0.1540] [0.1391] [0.1249] [0.1421] [0.1614] [0.1336] [0.0995] [0.1428] [0.1407]

f̃ RTS,MB
0.3081 0.2847 0.0152 0.0173 0.0228 0.0249 0.0349 0.0614 0.1206 0.1263
(0.2929) (0.2621) (0.0020) (0.0052) (0.0105) (0.0034) (0.0224) (0.0586) (0.1098) (0.1144)
[0.1435] [0.1543] [0.1387] [0.1242] [0.1406] [0.1598] [0.1326] [0.0998] [0.1410] [0.1389]

f̃JLN,B
0.2455 0.2268 0.0159 0.0147 0.0186 0.0227 0.0246 0.0413 0.0811 0.0944
(0.2305) (0.2079) (0.0009) (0.0022) (0.0048) (0.0099) (0.0104) (0.0334) (0.0671) (0.0828)
[0.1225] [0.1294] [0.1224] [0.1106] [0.1241] [0.1160] [0.1173] [0.0969] [0.1251] [0.1179]

f̃JLN,MB
0.2857 0.2658 0.0151 0.0148 0.0208 0.0260 0.0290 0.0532 0.0927 0.1089
(0.2724) (0.2481) (0.0014) (0.0032) (0.0072) (0.0136) (0.0155) (0.0465) (0.0800) (0.0978)
[0.1237] [0.1309] [0.1225] [0.1107] [0.1222] [0.1140] [0.1158] [0.0965] [0.1238] [0.1171]

f̃ RJLN,B
0.2221 0.2064 0.0160 0.0145 0.0187 0.0228 0.0245 0.0410 0.0855 0.1009
(0.2031) (0.1829) (0.0005) (0.0013) (0.0047) (0.0098) (0.0107) (0.0336) (0.0710) (0.0886)
[0.1293] [0.1362] [0.1235] [0.1119] [0.1242] [0.1161] [0.1165] [0.0957] [0.1258] [0.1190]

f̃ RJLN,MB
0.2779 0.2597 0.0151 0.0148 0.0209 0.0251 0.0290 0.0531 0.0971 0.1117
(0.2626) (0.2396) (0.0013) (0.0031) (0.0064) (0.0119) (0.0153) (0.0465) (0.0839) (0.1002)
[0.1279] [0.1349] [0.1228] [0.1110] [0.1237] [0.1157] [0.1162] [0.0960] [0.1246] [0.1176]

Smoothing parameter:
Plain:
Mean 0.0424 0.0572 0.0380 0.1223 0.0213 0.0343 0.0321 0.1591 0.0344 0.0761
Std. Dev. 0.0011 0.0072 0.0010 0.0499 0.0010 0.0058 0.0010 0.0983 0.0014 0.0116
#{Trimmed} 0 0 0 0 0 0 0 3 0 0
TS-MBC:
Mean 0.1088 0.0875 0.0975 0.1524 0.0547 0.0365 0.0823 0.3015 0.0882 0.0948
Std. Dev. 0.0028 0.0101 0.0027 0.0400 0.0025 0.0200 0.0026 0.0789 0.0037 0.0109
#{Trimmed} 0 0 0 0 0 0 0 1 0 0
JLN-MBC:
Mean 0.1088 0.0919 0.0975 0.1461 0.0547 0.0749 0.0823 0.2003 0.0882 0.1142
Std. Dev. 0.0028 0.0071 0.0027 0.0303 0.0025 0.0115 0.0026 0.0395 0.0037 0.0107
#{Trimmed} 0 0 0 0 0 0 0 0 0 0

Note: ‘‘ROT’’ and ‘‘BR’’ in column headings denote ‘‘rule-of-thumb’’ and ‘‘beta-referenced’’ smoothing parameter choice methods. Numbers in parentheses
and brackets for density estimators are averages of integrated squared biases and standard errors (defined as square roots of the estimates of asymptotic
integrated variances). ‘‘Mean’’, ‘‘Std. Dev.’’, and ‘‘#{Trimmed}’’ for smoothing parameters are averages, standard deviations, and numbers of smoothing
parameters trimmed at one.

is a cumbersome task. Because 0 < c < 1, the density estimator using b/c tends to be oversmoothed, which is potentially
a source of a large bias in every TS-MBC estimator. On the other hand, if we make b too short in order to have a reasonable
length of b/c , additional variability is introduced to the other estimator using b due to undersmoothing. In addition, when
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the modified beta kernel is employed, these two smoothing parameters also play a role of determining the boundary region
explicitly (e.g. [0, 2b)∪(1− 2b, 1] for the density estimator using b). Unless b is short enough, there is a very narrow ‘interior’
region for the density estimator using b/c. This aspect is also thought to amplify the bias in f̃TS,MB (x). In other words, when
TS-MBC estimation is applied, it is desirable to use a smoothing parameter choice method that tends to pick up a small
value consistently. This explains why the rule-of-thumb method in general performs better in TS-MBC estimation than the
beta-referenced method.
Second, Fig. 2 exhibits average plots of selected density estimates based on f̂ rB (x). For brevity, only plots based on the

rule-of-thumb method are provided. We can see from Panels (a), (b) and (d) that the density estimates tend to be upward
biased substantially near the boundary, wherever the tail of the true density is thick; on the other hand, this issue is not
serious if the tail is thin (e.g. left tail of Panel (a)). In fact, f̂ rB (x) possesses two kinds of bias terms. Other than the same
bias term as f̂B (x) has

(
=
{
(1− 2x) f ′ (x)+ (1/2) x (1− x) f ′′ (x)

}
b
)
, the estimator generates an extra O (b) bias that is

induced by renormalization and thus peculiar to this estimator. The extra bias comes from the fact that the normalization
constant does not become unity near the boundary. More precisely, if the data point Xi lies in an O (b) boundary region,∫ 1
0 KB(x/b+1,(1−x)/b+1) (Xi) dx ∼ Φ

(√
κ
)
∈ (1/2, 1), whereΦ (·) is the standard normal distribution function; the derivation

is similar to the proof for the variance part of Theorem 2, and thus it is omitted. In finite samples, the O (b) boundary region
is not negligible, and a number of observations are likely to be concentrated near the boundary when the true density has a
thick tail. Then, the ‘renormalized’ contributionsKB(x/b+1,(1−x)/b+1) (Xi) /

∫ 1
0 KB(x/b+1,(1−x)/b+1) (Xi) dx from these observations

tend to be inflated. As a result, at a design point x toward the boundary, the inflated contributions dominate due to proximity
of x to the observations in the boundary region, leading to an upward biased estimate. A similar argument can also explain
superior performance of f̂ rB (x) for Distribution 6 in Panel (c). Moreover, as mentioned above, the bias-uncorrected and
its renormalized estimators have no asymptotic biases for Distribution 1. Nonetheless, in this case, f̂ rB (x) still generates
a substantially large bias; indeed, the extra bias induced by renormalization does not disappear even in this case.

4. An application: Estimating the density of eruption durations of the Old Faithful Geyser

Weapply twoMBC techniques to a data set of eruption durations of the Old Faithful Geyser in Yellow StoneNational Park,
Wyoming, USA. The data set is famous and applied frequently in the literature. Many textbooks on nonparametric statistics
(e.g. Silverman, 1986; Loader, 1999) adopt it as an example of density estimation. Azzalini and Bowman (1990) also analyze
the data set extensively. The data set can be found in many sources. The one used in this section has been downloaded from
the web site for Wasserman (2006).
The data set contains durations of 272 consecutive eruptions, ranging from 1.6 to 5.1minutes. As in Gu (2002, p. 191), the

density of eruption durations is assumed to have a compact support [1.5, 5.25]. An extension of beta density estimation to
any compact support is easy. In this example, an original observationXi ∈ [1.5, 5.25] can bemapped onto the unit interval by
the transformation Zi = (Xi − 1.5) /3.75. Then, beta density estimation can be implemented using the transformed data Zi.
It is widely believed that the density is bimodal, which would be the closest to Distribution 10 in our Monte Carlo

simulations. Tables 3 and 5 indicate that for this distribution, the beta kernel and the rule-of-thumbmethod perform better
than themodified beta kernel and the beta-referencedmethod, respectively. Renormalization does not necessarily decrease
the average ISE. Therefore, the following three density estimators are considered: (i) bias-uncorrected beta estimator
f̂B (x); (ii) beta TS-MBC estimator f̃TS,B (x) with the MISE-optimal c∗ = 0.2636; and (iii) beta JLN-MBC estimator f̃JLN,B (x).
Smoothing parameters are chosen via the rule-of-thumb method for the transformed data, which picks b̂plain = 0.0323 and
b̂mbc = 0.0876.
The three density estimates are plotted in Fig. 3. Note that ‘‘×’’ symbols are data points. Each of three density estimates

successfully captures the bimodal shape. As the true density is unknown, it is hard to judge superiority among three
estimators. However, we can see that compared with the bias-uncorrected estimate, two MBC estimates tend to make the
heights of two peaks lower without changing their locations much.

5. Conclusion

This paper has demonstrated that two well-known bias correction techniques can be applied to density estimation
using the beta and modified beta kernels. Under sufficient smoothness of the true density, both bias reduction methods
are shown to improve the order of magnitude in bias from O (b) to O

(
b2
)
, while the order of magnitude in variance

remains unchanged. Two classes of bias-corrected density estimators are by construction nonnegative, and establish a faster
convergence rate of O

(
n−8/9

)
in MSE for the interior part when best implemented, as with symmetric second-order kernels.

Monte Carlo simulations indicate superior performance of JLN-type estimators in particular, compared to corresponding
bias-uncorrected estimators.
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Fig. 1. Average plots of MBC beta density estimates (n = 100).
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Fig. 2. Average plots of ‘‘micro’’ beta density estimates (n = 100; rule-of-thumb method).
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Appendix

A.1. Proof of Theorem 1

We present only the proof when the beta kernel is employed. The proof when the modified beta kernel is used is similar,
and thus it is omitted. Accordingly, we can safely suppress the subscript j.
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A.1.1. Bias
The proof largely follows TS. Let θx

d
= B (x/b+ 1, (1− x) /b+ 1). Taking a fourth-order Taylor expansion around θx = x

for

Ib (x) = E
{
f̂b (x)

}
=

∫ 1

0
KB(x/b+1,(1−x)/b+1) (u) f (u) du = E {f (θx)} ,

we have

Ib (x) = f (x)+
4∑
j=1

f (j) (x)
j!
E (θx − x)j + o

{
E (θx − x)4

}
.

By the property of the beta random variables and a Taylor expansion around b = 0,

E (θx − x) = (1− 2x) b− 2(1− 2x)b2 + O
(
b3
)
,

E (θx − x)2 = x (1− x) b+ (11x2 − 11x+ 2)b2 + O
(
b3
)
,

E (θx − x)3 = 5x (1− x) (1− 2x) b2 + O
(
b3
)
,

E (θx − x)4 = 3x2 (1− x)2 b2 + O
(
b3
)
.

An argument similar to the proof of LemmaB2(a)-(ii) in Gospodinov and Hirukawa (2007) can also demonstrate that
E (θx − x)r = O

(
b3
)
for r ≥ 5. Hence,

Ib (x) = f (x)
{
1+

a1 (x)
f (x)

b+
a2 (x)
f (x)

b2 + o
(
b2
)}
, (1)

where

a1 (x) = (1− 2x) f ′ (x)+
1
2
x (1− x) f ′′ (x) ,

a2 (x) = −2 (1− 2x) f ′ (x)+
1
2

(
11x2 − 11x+ 2

)
f ′′ (x)+

5
6
x (1− x) (1− 2x) f ′′′ (x)+

1
8
x2 (1− x)2 f ′′′′ (x) .

Taking the logarithm on both sides of (1) for an arbitrarily small b > 0 and then using a Taylor expansion, we have

log Ib (x) = log f (x)+
a1 (x)
f (x)

b+
1
2

{
2a2 (x) f (x)− a21 (x)

f 2 (x)

}
b2 + o

(
b2
)
. (2)

Similarly, log Ib/c (x) = E
{
f̂b/c (x)

}
can be approximated by

log Ib/c (x) = log f (x)+
1
c

{
a1 (x)
f (x)

}
b+

1
2c2

{
2a2 (x) f (x)− a21 (x)

f 2 (x)

}
b2 + o

(
b2
)
. (3)

Then,

1
1− c

log Ib (x)−
c
1− c

log Ib/c (x) = log f (x)−
1

c (1− c)

{
a2 (x) f (x)− 1

2a
2
1 (x)

f 2 (x)

}
b2 + o

(
b2
)
,

which yields

{Ib (x)}
1
1−c
{
Ib/c (x)

}− c
1−c = f (x)+

1
c (1− c)

[
1
2

{
a21 (x)
f (x)

}
− a2 (x)

]
b2 + o

(
b2
)

(4)

after taking the exponential on both sides and using a Taylor expansion.
Define Z = f̂b (x) − Ib (x) and W = f̂b/c (x) − Ib/c (x). Then, E (Z) = E (W ) = 0, and each of E

(
Z2
)
= var

{
f̂b (x)

}
,

E
(
W 2
)
= var

{
f̂b/c (x)

}
and E (ZW ) = cov

{
f̂b (x) , f̂b/c (x)

}
is at most O

(
n−1b−1

)
, as shown in the variance part below.

Again, by a Taylor expansion,

f̃TS (x) = {Ib (x)}
1
1−c

{
1+

Z
Ib (x)

} 1
1−c {

Ib/c (x)
}− c

1−c

{
1+

W
Ib/c (x)

}− c
1−c

= {Ib (x)}
1
1−c
{
Ib/c (x)

}− c
1−c +

1
1− c

Z
{
Ib (x)
Ib/c (x)

} c
1−c

−
c
1− c

W
{
Ib (x)
Ib/c (x)

} 1
1−c

+ O
{
(Z +W )2

}
. (5)
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Since (2) and (3) imply that Ib (x) /Ib/c (x) = 1+ O (b), substituting (4) finally yields

E
{
f̃TS (x)

}
= {Ib (x)}

1
1−c
{
Ib/c (x)

}− c
1−c + O

(
n−1b−1

)
= f (x)+

1
c (1− c)

[
1
2

{
a21 (x)
f (x)

}
− a2 (x)

]
b2 + o

(
b2
)
+ O

(
n−1b−1

)
,

where the remainder term O
(
n−1b−1

)
= o

(
b2
)
by (A2).

A.1.2. Variance
It follows from (5) that

var
{
f̃TS (x)

}
= E

(
1
1− c

Z −
c
1− c

W
)2
+ O

(
n−1

)
=

1

(1− c)2
[
var

{
f̂b (x)

}
− 2c · cov

{
f̂b (x) , f̂b/c (x)

}
+ c2 · var

{
f̂b/c (x)

}]
+ O

(
n−1

)
.

For interior x,

var
{
f̂b (x)

}
= n−1b−1/2

f (x)
2
√
π
√
x (1− x)

+ o
(
n−1b−1/2

)
,

var
{
f̂b/c (x)

}
= n−1b−1/2c1/2

f (x)
2
√
π
√
x (1− x)

+ o
(
n−1b−1/2

)
.

Now,

cov
{
f̂b (x) , f̂b/c (x)

}
= n−1E

{
KB(x/b+1,(1−x)/b+1) (X1) KB(cx/b+1,c(1−x)/b+1) (X1)

}
+ O

(
n−1

)
.

In particular,

E
{
KB(x/b+1,(1−x)/b+1) (X1) KB(cx/b+1,c(1−x)/b+1) (X1)

}
= Gb (x) {f (x)+ o (1)} ,

where

Gb (x) =
B
(
(1+c)x
b + 1, (1+c)(1−x)b + 1

)
B
( x
b + 1,

1−x
b + 1

)
B
(
cx
b + 1,

c(1−x)
b + 1

)
=

0

(
(1+c)x
b + 1

)
0

(
(1+c)(1−x)

b + 1
)
0
( 1
b + 2

)
0
( c
b + 2

)
0
( 1+c
b + 2

)
0
( x
b + 1

)
0
( 1−x
b + 1

)
0
( cx
b + 1

)
0

(
c(1−x)
b + 1

) . (6)

Define R (z) =
√
2πzz+1/2 exp (−z) /0 (z + 1) for z > 0, as in Lemma 3 of Brown and Chen (1999). Then, following the

argument in Chen (2000a, p. 87),

Gb (x) =
(
1+ c
c

)1/2 b1/2
√
2π
√
x (1− x)

(
1+ 1

b

) (
1+ c

b

)
1+ 1+c

b

S (b, x) ,

where

S (b, x) =
R
( 1+c
b

)
R
( x
b

)
R
( 1−x
b

)
R
( cx
b

)
R
(
c(1−x)
b

)
R
(
(1+c)x
b

)
R
(
(1+c)(1−x)

b

)
R
( 1
b

)
R
( c
b

) → 1,

(
1+ 1

b

) (
1+ c

b

)
1+ 1+c

b

=

(
c
1+ c

)
b−1 {1+ O (b)} .

Therefore,

cov
{
f̂b (x) , f̂b/c (x)

}
= n−1b−1/2

√
2c1/2

(1+ c)1/2
f (x)

2
√
π
√
x (1− x)

+ o
(
n−1b−1/2

)
,

which establishes the result for interior x.
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On the other hand, as x/b→ κ when x→ 0,

var
{
f̂b (x)

}
= n−1b−1

0 (2κ + 1) f (x)
22κ+102 (κ + 1)

+ o
(
n−1b−1

)
,

var
{
f̂b/c (x)

}
= n−1b−1c

0 (2cκ + 1) f (x)
22cκ+102 (cκ + 1)

+ o
(
n−1b−1

)
.

It follows from (6) that

Gb (x) ∼
1

(1+ c)κ

(
c
1+ c

)cκ
0 ((1+ c) κ + 1)

0 (κ + 1)0 (cκ + 1)

(
1+ 1

b

) (
1+ c

b

)
1+ 1+c

b

R
( 1+c
b

)
R
( 1−x
b

)
R
(
c(1−x)
b

)
R
(
(1+c)(1−x)

b

)
R
( 1
b

)
0
( c
b

)
∼

1
(1+ c)κ

(
c
1+ c

)cκ+1
0 ((1+ c) κ + 1) b−1

0 (κ + 1)0 (cκ + 1)
.

Therefore,

cov
{
f̂b (x) , f̂b/c (x)

}
= n−1b−1

1
(1+ c)κ

(
c
1+ c

)cκ+1
0 ((1+ c) κ + 1) f (x)
0 (κ + 1)0 (cκ + 1)

+ o
(
n−1b−1

)
,

which yields the stated result. The proof for (1− x) /b→ κ is similar. �

A.2. Proof of Theorem 2

Again, only the proof when the beta kernel is employed is given. Because JLN-MBC uses a single smoothing parameter,
the subscript b is also suppressed throughout.

A.2.1. Bias
The proof largely follows JLN. Let α̂ (x) = n−1

∑n
i=1 KB(x/b+1,(1−x)/b+1) (Xi) /f̂ (Xi) and rewrite f̃JLN (x) as

f̃JLN (x) = f̂ (x) α̂ (x) = f (x)

{
1+

f̂ (x)− f (x)
f (x)

} [
1+

{
α̂ (x)− 1

}]
.

Then,

E
{
f̃JLN (x)

}
= f (x)+ f (x)

[
E

{
f̂ (x)− f (x)
f (x)

}
+ E

{
α̂ (x)− 1

}
+ E

{(
f̂ (x)− f (x)
f (x)

) (
α̂ (x)− 1

)}]
. (7)

We provide approximations to three expectations inside the brackets separately. First, we approximate E
{
α̂ (x)− 1

}
. By

a geometric expansion,

α̂ (x) =
1
n

n∑
i=1

KB(x/b+1,(1−x)/b+1) (Xi)
f (Xi)

1− { f̂ (Xi)− f (Xi)
f (Xi)

}
+

{
f̂ (Xi)− f (Xi)
f (Xi)

}2+ op (b2 + n−1b−1) ,
where the remainder term is op

(
b2 + n−1b−1

)
= op

(
b2
)
by (A2). We now evaluate the expectation of the ith summand

conditional on Xi. Using (1),

E

{
f̂ (Xi)− f (Xi)
f (Xi)

∣∣∣∣∣ Xi
}
=
a1 (Xi)
f (Xi)

b+
a2 (Xi)
f (Xi)

b2 + o
(
b2
)
≡ h1 (Xi) b+ h2 (Xi) b2 + o

(
b2
)
, (8)

where a1 (x) and a2 (x) are defined in the proof of Theorem 1. In addition, by (A2),

E

{ f̂ (Xi)− f (Xi)
f (Xi)

}2∣∣∣∣∣∣ Xi
 = h21 (Xi) b2 + o (b2)+ O (n−1b−1) = h21 (Xi) b2 + o (b2) .

Hence, the conditional expectation of the ith summand can be approximated by

KB(x/b+1,(1−x)/b+1) (Xi)
f (Xi)

[
1− h1 (Xi) b+

{
h21 (Xi)− h2 (Xi)

}
b2
]
+ o

(
b2
)
.
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It follows that

E
{
α̂ (x)

}
= E

{
KB(x/b+1,(1−x)/b+1) (X1)

f (X1)

}
− E

{
KB(x/b+1,(1−x)/b+1) (X1)

f (X1)
h1 (X1)

}
b

+ E
[
KB(x/b+1,(1−x)/b+1) (X1)

f (X1)

{
h21 (X1)− h2 (X1)

}]
b2 + o

(
b2
)

= 1− E {h1 (θx)} b+ E
{
h21 (θx)− h2 (θx)

}
b2 + o

(
b2
)
,

where θx
d
= B (x/b+ 1, (1− x) /b+ 1). By the property of the beta random variables and a Taylor expansion around θx = x,

we have

E {h1 (θx)} = h1 (x)+
{
(1− 2x) h′1 (x)+

1
2
x (1− x) h′′1 (x)

}
b+ o (b) ,

E
{
h21 (θx)− h2 (θx)

}
= h21 (x)− h2 (x)+ O (b) ,

so that

E
{
α̂ (x)

}
= 1− h1 (x) b+

[
h21 (x)− h2 (x)−

{
(1− 2x) h′1 (x)+

1
2
x (1− x) h′′1 (x)

}]
b2 + o

(
b2
)
. (9)

Second, it immediately follows from (8) that

E

{
f̂ (x)− f (x)
f (x)

}
= h1 (x) b+ h2 (x) b2 + o

(
b2
)
. (10)

Third, by the Cauchy–Schwarz inequality and (A2),

E

[{
f̂ (x)− f (x)
f (x)

}{
α̂ (x)− 1

}]
= −h21 (x) b

2
+ o

(
b2
)
. (11)

Finally, substituting (9)–(11) into (7) yields

E
{
f̃JLN (x)

}
= f (x)− f (x)

{
(1− 2x) h′1 (x)+

1
2
x (1− x) h′′1 (x)

}
b2 + o

(
b2
)

= f (x)− f (x)
[
(1− 2x)

{
a1 (x)
f (x)

}′
+
1
2
x (1− x)

{
a1 (x)
f (x)

}′′]
b2 + o

(
b2
)
.

A.2.2. Variance
Observe that

f̃JLN (x) = f (x)

{
1+

f̂ (x)− f (x)
f (x)

}
1
n

n∑
i=1

KB(x/b+1,(1−x)/b+1) (Xi)
f (Xi)

[
1−

f̂ (Xi)− f (Xi)
f (Xi)

+ o

{
f̂ (Xi)− f (Xi)
f (Xi)

}]

∼ f (x)
1
n

n∑
i=1

KB(x/b+1,(1−x)/b+1) (Xi)
f (Xi)

{
2−

f̂ (Xi)
f (Xi)

}
,

where
n∑
i=1

KB(x/b+1,(1−x)/b+1) (Xi)
f (Xi)

{
2−

f̂ (Xi)
f (Xi)

}

=

n∑
i=1

{
2KB(x/b+1,(1−x)/b+1) (Xi)

f (Xi)
−
1
n

n∑
j=1

KB(x/b+1,(1−x)/b+1)
(
Xj
)
KB(Xj/b+1,(1−Xj)/b+1) (Xi)

f 2
(
Xj
) }

≡

n∑
i=1

{ς1 (Xi)− ς2 (Xi)}

≡

n∑
i=1

ς (Xi) .
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We approximate ς2 (Xi) for a given data point Xi. The idea closely follows Section 3.2 of Jones and Henderson (2007b).
For Xi 6= 0, 1,

ς2 (Xi) ∼ ϕ (Xi)

≡ E

{
KB(x/b+1,(1−x)/b+1)

(
Xj
)
KB(Xj/b+1,(1−Xj)/b+1) (Xi)

f 2
(
Xj
) ∣∣∣∣∣ Xi

}

=

∫ 1

0

KB(x/b+1,(1−x)/b+1) (u) KB(u/b+1,(1−u)/b+1) (Xi)
f (u)

du

=

∫ 1

0

u
x
b (1− u)

1−x
b exp

{( u
b

)
log Xi +

( 1−u
b

)
log (1− Xi)− log B

( u
b + 1,

1−u
b + 1

)}
B
( x
b + 1,

1−x
b + 1

)
f (u)

du.

By Stirling’s approximation,

log B
(
u
b
+ 1,

1− u
b
+ 1

)
=
1
b
{u log u+ (1− u) log (1− u)} +

1
2
log b

+
1
2
log 2π +

1
2
log u (1− u)−

b
(
u2 − u+ 1

)
12u (1− u)

+ O
(
b3/2

)
,

and thus

ϕ (Xi) =
b−1/2
√
2π

∫ 1

0
ψ (u) exp

{(u
b

)
log
Xi
u
+

(
1− u
b

)
log

(
1− Xi
1− u

)
−
b
(
u2 − u+ 1

)
12u (1− u)

+ O
(
b3/2

)}
du,

where

ψ (u) =
u
x
b−

1
2 (1− u)

1−x
b −

1
2

f (u) B
( x
b + 1,

1−x
b + 1

) = KB(x/b+1,(1−x)/b+1) (u)√
u (1− u)f (u)

.

By a change of variablew = (Xi − u) /b1/2 and a Taylor expansion,

ϕ (Xi) =
1
√
2π

∫ Xi/b1/2

−(1−Xi)/b1/2
ψ
(
Xi − b1/2w

)
exp

{
−

w2

2Xi (1− Xi)

}
×

{
1−

b1/2 (1− 2Xi) w3

6X2i (1− Xi)
2 −

b
(
3X2i − 3Xi + 1

)
w4

12X3i (1− Xi)
3 −

b
(
X2i − Xi + 1

)
12Xi (1− Xi)

+
b (1− 2Xi)2w6

72X4i (1− Xi)
4 + O

(
b3/2

)}
dw.

By another change of variable v = w/
√
Xi (1− Xi),

ϕ (Xi) =
√
Xi (1− Xi)

∫ √Xi/(1−Xi)/b1/2
−
√
(1−Xi)/Xi/b1/2

ψ
(
Xi − b1/2

√
Xi (1− Xi)v

)
φ (v)

×

{
1−

b1/2 (1− 2Xi) v3

6
√
Xi (1− Xi)

−
b
(
3X2i − 3Xi + 1

)
v4

12Xi (1− Xi)
−
b
(
X2i − Xi + 1

)
12Xi (1− Xi)

+
b (1− 2Xi)2 v6

72Xi (1− Xi)
+ O

(
b3/2

)}
dv

∼
KB(x/b+1,(1−x)/b+1) (Xi)

f (Xi)
×

{
1 if Xi/b→∞ and (1− Xi) /b→∞
Φ
(√
κ
)
if Xi/b→ κ or (1− Xi) /b→ κ,

where φ (·) andΦ (·) denote the standard normal density and distribution functions. Therefore,

ς (Xi) ∼ ς1 (Xi)− ϕ (Xi)

∼
KB(x/b+1,(1−x)/b+1) (Xi)

f (Xi)
×

{
1 if Xi/b→∞ and (1− Xi) /b→∞
2− Φ

(√
κ
)
if Xi/b→ κ or (1− Xi) /b→ κ

≡ ζ (Xi) .

It follows that

var
{
f̃JLN (x)

}
∼ f 2 (x)

1
n
var {ζ (X1)} = f 2 (x)

[
1
n
E
{
ζ 2 (X1)

}
+ O

(
n−1

)]
.
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Pick δ = b1−ε where ε ∈ (0, 1/2). Following the trimming argument as in Chen (1999),

E
{
ζ 2 (X1)

}
=

∫ 1

0
ζ 2 (u) f (u) du

=

∫ δ

0
+

∫ 1−δ

δ

+

∫ 1

1−δ
ζ 2 (u) f (u) du

= Ab (x)
∫ 1

0

KB(2x/b+1,2(1−x)/b+1) (u)
f (u)

du+ O
(
b−ε

)
,

where

Ab (x) =
B
(
2x
b + 1,

2(1−x)
b + 1

)
B2
( x
b + 1,

1−x
b + 1

) ∼


b−1/2

2
√
π
√
x (1− x)

if x/b→∞ and (1− x) /b→∞

0 (2κ + 1) b−1

22κ+102 (κ + 1)
if x/b→ κ or (1− x) /b→ κ.

The stated result follows from recognizing that∫ 1

0

KB(2x/b+1,2(1−x)/b+1) (u)
f (u)

du = E
{
f −1 (ϑx)

}
= f −1 (x)+ O (b) ,

where ϑx
d
= B (2x/b+ 1, 2 (1− x) /b+ 1). �

A.3. Formulae for beta-referenced smoothing parameters

The analytical expression of b̂TS,MB is

b̂TS,MB =
{
c2 (1− c)2 λ (c)

}2/9 {B (α, β) B (α + 9/2, β + 9/2)
16
√
πCTS,MB (α, β)

}2/9
n−2/9,

where

CTS,MB (α, β) =
1

0 (2α + 2β + 8)

{
ψ210 (2α)0 (2β + 8)− 2ψ1ψ20 (2α + 1)0 (2β + 7)

+
(
ψ22 + 2ψ1ψ3

)
0 (2α + 2)0 (2β + 6)− 2 (ψ1ψ4 + ψ2ψ3)0 (2α + 3)0 (2β + 5)

+
(
ψ23 + 2ψ1ψ5 + 2ψ2ψ4

)
0 (2α + 4)0 (2β + 4)

− 2 (ψ2ψ5 + ψ3ψ4)0 (2α + 5)0 (2β + 3)+
(
ψ24 + 2ψ3ψ5

)
0 (2α + 6)0 (2β + 2)

− 2ψ4ψ50 (2α + 7)0 (2β + 1)+ ψ250 (2α + 8)0 (2β)
}
,

ψ1 =
1
8
(α − 1)2 (α − 2)2 −

1
3
(α − 1) (α − 2) (α − 3)−

1
8
(α − 1) (α − 2) (α − 3) (α − 4) ,

ψ2 =
1
2
(α − 1)2 (α − 2) (β − 1)−

1
2
(α − 1) (α − 2)−

1
3
(α − 1) (α − 2) (α − 3)

− (α − 1) (α − 2) (β − 1)−
1
2
(α − 1) (α − 2) (α − 3) (β − 1) ,

ψ3 =
1
2
(α − 1)2 (β − 1)2 −

1
2
(α − 1) (α − 2) (β − 1) (β − 2)− (α − 1) (β − 1)

− (α − 1) (α − 2) (β − 1)− (α − 1) (β − 1) (β − 2) ,

ψ4 =
1
2
(α − 1) (β − 1)2 (β − 2)−

1
2
(β − 1) (β − 2)−

1
3
(β − 1) (β − 2) (β − 3)

− (α − 1) (β − 1) (β − 2)−
1
2
(α − 1) (β − 1) (β − 2) (β − 3) ,

ψ5 =
1
8
(β − 1)2 (β − 2)2 −

1
3
(β − 1) (β − 2) (β − 3)−

1
8
(β − 1) (β − 2) (β − 3) (β − 4) .

Furthermore, b̂JLN,MB takes the form of

b̂JLN,MB =
{
B (α, β) B (α + 9/2, β + 9/2)

4
√
πCJLN,MB (α, β)

}2/9
n−2/9,
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where

CJLN,MB (α, β) =
1

0 (2α + 2β + 8)

[
(α − 1)2 (α − 2)2

× {0 (2α)0 (2β + 8)+ 20 (2α + 1)0 (2β + 7)+ 0 (2α + 2)0 (2β + 6)}
+ 2 (α − 1) (α − 2) (β − 1) (β − 2)
× {0 (2α + 3)0 (2β + 5)+ 20 (2α + 4)0 (2β + 4)+ 0 (2α + 5)0 (2β + 3)}
+ (β − 1)2 (β − 2)2 {0 (2α + 6)0 (2β + 2)+ 20 (2α + 7)0 (2β + 1)+ 0 (2α + 8)0 (2β)}

]
.

On the other hand, Jones and Henderson (2007b) define the beta-referenced smoothing parameter for f̂MB (x) as

b̂MB = argmin
b
AWMISE

{
f̂MB (x)

}
= argmin

b

b2

4

∫ 1

0

{
x (1− x) g ′′ (x)

}2
v (x) dx+

n−1b−1/2

2
√
π

∫ 1

0

g (x)
√
x (1− x)

v (x) dx,

where the weighting function v (x) is chosen as v (x) = x3 (1− x)3 to ensure finiteness of integrals. It follows that b̂MB can
be expressed as

b̂MB =
{
B (α, β) B (α + 5/2, β + 5/2)

2
√
πCMB (α, β)

}2/5
n−2/5,

where

CMB (α, β) =
1

0 (2α + 2β + 4)

{
(α − 1)2 (α − 2)2 0 (2α)0 (2β + 4)

− 4 (α − 1)2 (α − 2) (β − 1)0 (2α + 1)0 (2β + 3)
+ 2 (α − 1) (β − 1) (3αβ − 4α − 4β + 6)0 (2α + 2)0 (2β + 2)
− 4 (α − 1) (β − 1)2 (β − 2)0 (2α + 3)0 (2β + 1)+ (β − 1)2 (β − 2)2 0 (2α + 4)0 (2β)

}
. �
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