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1. Introduction

In time series econometrics, estimating the long-run variance
(“LRV”) matrix of a random vector process is essential for empirical
research on estimation (e.g. generalized method of moments) and
testing (e.g. standard error calculation and unit-root testing)
problems. This paper focuses on a standard, kernel smoothing
approach to LRV estimation, and investigates finite-sample perfor-
mance of the bandwidth choice rule newly proposed by Hirukawa
(2010) via Monte Carlo simulations, in comparison with two most
popular ones by Andrews (1991) and Newey and West (1994). The
simulation study is conducted in the context of cointegrating
regressions. While there is rich literature in simulation studies on
cointegrating regressions, this paper contributes the literature in the
following two respects. First, while Andrews' (1991) and Newey and
West's (1994) bandwidth choice rules (“A rule” and “NW rule”) are
frequently used in simulation studies, very little is known about finite-
sample performance of Hirukawa's (2010) solve-the-equation plug-in
bandwidth choice rule (“SP rule”). To the best of our knowledge, there
are only two simulation results on the SP rule, both of which are
available in Hirukawa (2010). Neither is on cointegrating regressions.
Second, the SP rule is expected to contribute the bias correction
method by Kurozumi and Hayakawa (2009) for the fully modified
least squares (“FMLS”; Phillips and Hansen, 1990) and canonical
cointegration regression (“CCR”; Park, 1992) estimators of cointe-
grating vectors. When the I(1) regressors are endogenous and/or the
regression errors are serially correlated in cointegrating regressions,
the ordinary least squares (“OLS”) estimators of cointegrating vectors
suffer so-called the “second-order bias”. Although FMLS and CCR are
proposed as devices for correcting the second-order bias nonparame-
trically by means of LRV estimators, these methods work poorly in the
presence of strong serial dependence in regression errors. Then,
Kurozumi and Hayakawa (2009) develop a further bias reduction
method for FMLS and CCR when regression errors obey an AR(1)
model with the AR coefficient moderately close to unity. However,
their simulation results indicate that average lengths of bandwidths
from the A and NW rules are too long and too short for the purpose of
bias reduction. Apparently, there is a need for a bandwidth choice rule
that tends to yield intermediate lengths. The SP rule is expected to be
a remedy, as suggested in the next section.

2. Three Bandwidth Formulae in LRV Estimation

To illustrate the difference in three bandwidth choice rules, consider a
problem of estimating the LRV of a zero-mean scalar process ht, where
the LRV is defined as ω=∑ j=−∞

∞ γ(j)=∑ j=−∞
∞ E(htht− j). Given T

observations {ht}t=1
T , a kernel k(⋅) and a bandwidth M, the kernel

estimator of ω is given by a weighted sum of sample autocovariances
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ω̂ = ∑T−1
j = − T−1ð Þ k j =Mð Þ γ̂ jð Þ, where γ̂ jð Þ =T−1∑min T + j;Tf g

t=max 1;1 + jf g htht−j.
Each of the three rules is an estimator of theminimizer of the asymptotic
mean squared error (“AMSE”) of ω̂. The minimizer (= AMSE-optimal
bandwidth) is given by

M⁎ =
qk2q R qð Þ� �2
∫
∞

−∞
k2 xð Þdx

8><
>:

9>=
>;

1= 2q + 1ð Þ

T1= 2q + 1ð Þ
;

where q(N0) is the characteristic exponent of k(⋅) that satisfies
kq = limx→0 1−k xð Þf g = xj jq∈ 0;∞ð Þ, s nð Þ =∑∞

j = −∞ jj jnγ jð Þ, and R(q)=
s(q)/s(0) is the only unknown quantity called the normalized curvature
in Hirukawa (2010). The three rules differ in how to estimate the
quantity.Andrews (1991) estimates it parametrically byfittinganAR(1)
model to ht as a reference. In contrast, to avoid the issue ofmisspecifying
the process, NeweyandWest (1994) estimate thenormalized curvature
nonparametrically using the truncated kernel. Because the use of the
truncated kernel prevents them from providing an optimal bandwidth
for the normalized curvature estimator, they implement the bandwidth
for the truncated estimator in an ad hoc manner.

The SP rule in Hirukawa (2010) is established as an analog to the
bandwidth choice rule for probability density estimation by Sheather and
Jones (1991). Similar to Newey and West (1994), the normalized
curvature is estimated nonparametrically using the same kernel k(⋅)
andadifferentbandwidthb. A remarkabledifference fromtheapproach in
Newey andWest (1994) is that Hirukawa (2010) has derived the AMSE-
optimal bandwidth b⁎ for the kernel normalized curvature estimator
R̂ qð Þ bð Þ = ∑T−1

j=− T−1ð Þ k j= bð Þ jj jq γ̂ jð Þ=∑T−1
j=− T−1ð Þ k j= bð Þγ̂ jð Þ. In spirit

of Sheather and Jones (1991), the SP rule can be implemented by
numerically solving the following fixed point problem forM⁎:

M⁎=
qk2q R̂

qð Þ
b⁎ M⁎
� �� �n o2

∫
∞

−∞
k2 xð Þdx

2
64

3
75
1= 2q + 1ð Þ

T1= 2q + 1ð Þ
;

b⁎ M⁎
� �

=
α2 qð Þ∫∞

−∞
k2 xð Þdx

2q + 1ð Þ∫∞
−∞

xj j2qk2 xð Þdx

8<
:

9=
;

1= 4q + 1ð Þ

M⁎ 2q + 1ð Þ= 4q + 1ð Þ
;

where the unknown quantity α(q)=s(q)/s(0)−s(2q)/s(q) is estimated
by fitting an AR(1) model to ht. By construction, the SP rule
incorporates both parametric and nonparametric approaches. While
it relies on a parametric fitting to the unknown process ht for
implementation, it is still based on a kernel estimator of the
normalized curvature, which limits the influence of the parametric
reference. As a consequence, it is anticipated that when the A and NW
rules tend to yield long and short bandwidth lengths (which is typical
for moderately to highly persistent ht), the SP rule is likely to pick up
intermediate lengths.

3. Monte Carlo Simulations

This paper adopts the experimental design of Kurozumi and
Hayakawa (2009). Let the data yt ; xtð Þf gTt = 1∈R2 be generated by

yt = θ0 + θ1xt + u1t : = z′tθ + u1t ;Δxt = u2t ; ð1Þ

where the error term ut = u1t ;u2tð Þ′ obeys

u1t = ρu1t−1 + �1t ;u2t = �2t ;
�1t
�2t

� �
iid∼ N2

0
0

� �
;

1 σ21
σ21 1

� �� 	
:

True parameter values of θ = θ0; θ1ð Þ′, ρ, and σ21 are θ0=θ1=1,
ρ∈{0.7,0.8,0.85,0.9,0.95}, and σ21∈{0.4,0.8}. For each combination
of parameter values, 10,000 data sets of sample sizes T=100 or
T=300 are simulated.
Because of the endogeneity and the serially correlated regression
error in Eq. (1), θ̂ OLS (=OLS estimator of θ) is consistent but
inefficient due to the second-order bias. FMLS and CCR are developed
as efficient estimation methods that eliminate the second-order bias.
Let Ω and Λ be the two- and one-sided LRVs of ut . Specifically,

Ω = Σ + Γ + Γ′ = Ω11 Ω12
Ω21 Ω22

� �
; Λ = Σ + Γ = Λ11 Λ12

Λ21 Λ22

� �
= Λ1

Λ2

� �
;

where Σ = E utu′t
� �

and Γ = ∑∞
j = 1 E utu′t + j

� �
. Also let Ω̂ and Λ̂ be

the kernel estimators of Ω and Λwith ut replaced by ût = û1t ;Δxt
� �

′,

where û1t is the OLS residual of Eq. (1). The FMLS estimator of θ is given

by

θ̂ FMLS = ∑
T

t=1
ztz′t

 !−1

∑
T

t=1
zty

þ
t −T Ĵþ

 !
;

where yþt = yt− Ω̂12 Ω̂
−1
22 Δxt and Ĵ

þ = 0; Λ̂21− Λ̂ 22 Ω̂
−1
22 Ω̂21

� �
′

� �
′.

CCR employs the transformed data

x⁎t = xt− Σ̂
−1

Λ̂ 2

� �
′ût ; y⁎t = yt− Σ̂

−1
Λ̂ 2 θ̂ OLS + 0; Ω̂12 Ω̂

−1
22

� �
′

� �
′ût ;

where Σ̂ is a consistent estimator ofΣ. Defining zt⁎ = 1; xt⁎ð Þ′ yields the
CCR estimator of θ as

θ̂ CCR = ∑
T

t=1
zt⁎ zt⁎′

 !−1

∑
T

t=1
zt⁎ yt⁎

 !
:

However, FMLS and CCR work poorly when the regression error u1t
exhibits strong serial dependence. Kurozumi and Hayakawa (2009)
consider further bias reduction in FMLS and CCR for the N local-to-unity
system such that ρ is modeled as ρ=1−c/N, where N satisfies N→∞
but N=o(T). In addition, if M/N→dM for a bandwidth of the LRV
estimators M and if another bandwidth Mc satisfies Mc=o(N), c can be
consistently estimated by ĉ = N = 2ð Þ ω̂Δ11 = σ̂11

� �
, where σ̂11 =

T−1∑T
t = 1 û

2
1t and

ω̂Δ11 = ∑
T−1

j¼−ðT−1Þ
k

j
Mc

� 	
1
T
∑
minVT þ j;Tt

t¼maxV1;1þ jt
Δ û1tΔû1t−j

� 	
:

The bias-corrected FMLS and CCR (“FMLS-BC” and “CCR-BC”)
estimators of θ can be obtained by replacing Ω̂21; Λ̂ 21

� �
in θ̂ FMLS and

θ̂ CCR with Ω̃21; Λ̃ 21

� �
= Ω̂21 = κ̂; Λ̂ 21 = κ̂
� �

, where κ̂= ĉ dM∫∞
0 k rð Þ×

exp − ĉdMr
� �

dr. To implement FMLS-BC and CCR-BC, Kurozumi and
Hayakawa (2009) suggest that extra tuning parameters are set equal to
dM=1, N=M, andMc=M2/3.

In this simulation study, θ1 is estimated by OLS, FMLS, CCR, FMLS-
BC, and CCR-BC for each data set. Finite-sample performance of each
estimator is evaluated by its bias and mean squared error (“MSE”).
The Parzen kernel is employed for all LRV estimators, and three
bandwidths are computed via the A, NW, and SP rules. The lag length
for the truncated estimator of the normalized curvature in the NW
rule is set equal to ⌊4 T =100ð Þ4=25⌋, where ⌊ ⋅ ⌋ denotes the integer part.
Bandwidth values are trimmed at the sample size whenever
necessary. For FMLS-BC and CCR-BC, the SP rule sometimes picks up
a zero bandwidth. In this case, ĉ = 0 by N=M=0, and thus
Ω̃21; Λ̃21

� �
are not well-defined. Since the zero bandwidth is an

indication of weak serial dependence, no bias correction is made for
FMLS or CCR whenever it occurs.

4. Conclusion

Table 1 reports biases and MSEs of the five estimators of θ1.
Because the results for σ21=0.8 are qualitatively similar, only those



Table 1
Biases and MSEs of estimators of θ1 (σ21=0.4).

T=100 T=300

ρ 0.70 0.80 0.85 0.90 0.95 0.70 0.80 0.85 0.90 0.95

Bias
OLS 0.0623 0.0866 0.1077 0.1425 0.2114 0.0227 0.0330 0.0428 0.0609 0.1059
FMLS A 0.0318 0.0527 0.0722 0.1062 0.1780 0.0068 0.0128 0.0192 0.0329 0.0727

NW 0.0305 0.0510 0.0710 0.1070 0.1839 0.0070 0.0137 0.0213 0.0375 0.0830
SP 0.0312 0.0512 0.0704 0.1043 0.1775 0.0071 0.0129 0.0192 0.0325 0.0715

CCR A 0.0322 0.0538 0.0739 0.1087 0.1814 0.0070 0.0132 0.0200 0.0342 0.0751
NW 0.0308 0.0516 0.0718 0.1079 0.1847 0.0072 0.0140 0.0217 0.0379 0.0833
SP 0.0315 0.0520 0.0715 0.1059 0.1798 0.0072 0.0133 0.0199 0.0335 0.0734

FMLS-BC A 0.0216 0.0464 0.0677 0.1033 0.1766 0.0027 0.0103 0.0175 0.0318 0.0723
NW 0.0128 0.0370 0.0590 0.0973 0.1773 0.0007 0.0084 0.0166 0.0333 0.0797
SP 0.0120 0.0373 0.0593 0.0962 0.1728 0.0008 0.0084 0.0157 0.0300 0.0702

CCR-BC A 0.0239 0.0488 0.0703 0.1065 0.1804 0.0033 0.0110 0.0185 0.0333 0.0747
NW 0.0164 0.0402 0.0619 0.0999 0.1794 0.0015 0.0092 0.0173 0.0340 0.0802
SP 0.0159 0.0407 0.0625 0.0995 0.1762 0.0015 0.0093 0.0167 0.0314 0.0722

MSE
OLS 0.0137 0.0261 0.0401 0.0697 0.1513 0.0019 0.0040 0.0067 0.0133 0.0392
FMLS A 0.0123 0.0260 0.0423 0.0783 0.1828 0.0014 0.0032 0.0057 0.0125 0.0419

NW 0.0115 0.0245 0.0404 0.0764 0.1822 0.0013 0.0030 0.0054 0.0118 0.0393
SP 0.0114 0.0246 0.0408 0.0777 0.1882 0.0013 0.0030 0.0054 0.0119 0.0409

CCR A 0.0122 0.0258 0.0419 0.0771 0.1786 0.0014 0.0032 0.0057 0.0124 0.0414
NW 0.0114 0.0244 0.0401 0.0759 0.1811 0.0013 0.0030 0.0054 0.0117 0.0392
SP 0.0114 0.0244 0.0405 0.0769 0.1852 0.0013 0.0030 0.0054 0.0118 0.0406

FMLS-BC A 0.0129 0.0268 0.0433 0.0797 0.1850 0.0014 0.0032 0.0057 0.0126 0.0420
NW 0.0121 0.0255 0.0421 0.0800 0.1919 0.0013 0.0030 0.0053 0.0117 0.0396
SP 0.0120 0.0256 0.0425 0.0807 0.1945 0.0013 0.0030 0.0054 0.0119 0.0412

CCR-BC A 0.0126 0.0264 0.0426 0.0781 0.1802 0.0014 0.0032 0.0057 0.0125 0.0415
NW 0.0116 0.0249 0.0413 0.0786 0.1891 0.0013 0.0030 0.0053 0.0117 0.0395
SP 0.0115 0.0250 0.0416 0.0791 0.1901 0.0013 0.0030 0.0054 0.0118 0.0407

Bandwidth
A Mean 18.33 25.62 31.58 40.88 56.53 24.21 34.86 44.28 60.74 98.10

Std. Dev. 4.42 7.14 9.96 15.49 26.21 3.32 5.56 8.00 13.20 28.48
#{Trimmed} 0 0 0 58 738 0 0 0 0 0

NW Mean 9.94 11.23 11.88 12.47 12.96 13.48 15.07 15.77 16.40 16.98
Std. Dev. 2.33 1.80 1.46 1.16 0.92 1.48 0.84 0.63 0.46 0.33
#{Trimmed} 0 0 0 0 0 0 0 0 0 0

SP Mean 9.24 12.19 14.36 17.45 21.86 13.99 19.17 23.35 29.99 43.19
Std. Dev. 3.62 4.97 6.10 8.07 10.79 3.24 4.29 5.37 7.46 13.60
#{Zero} 18 3 0 0 0 0 0 0 0 0

Note: “Mean”, “Std. Dev.”, “#{Trimmed}”, and “#{Zero}” for bandwidths are averages, standard deviations, numbers of trimmed bandwidths at the sample size, and numbers of zero
bandwidths, respectively.
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for σ21=0.4 are presented. Descriptive statistics on bandwidths are
also provided for convenience. Frequencies of trimmed and zero
bandwidths are relatively small, and thus their influences over the
results appear to be negligible.

The results are summarized as follows:

• FMLS and CCR are less biased than OLS, and FMLS-BC and CCR-BC are
less biased than FMLS and CCR. However, the advantage in bias of
FMLS-BC and CCR-BC over FMLS and CCR appears to be diminishing
as ρ increases. In addition, FMLS and FMLS-BC tend to be less biased
than CCR and CCR-BC.

• Results on MSEs are mixed. While four efficient estimators do not
always reduce MSEs from OLS for σ21=0.4, these estimators yield
smaller MSEs than OLS for σ21=0.8 (unreported).

• For each of FMLS and CCR, when ρ is close to unity, the SP rule tends
to yield the smallest bias among three bandwidth choice rules.

• In the presence of moderate to high persistence in regression errors,
average lengths of bandwidths tend to be in the order of the NW, SP,
and A rules from shortest to longest, as anticipated. For each of
FMLS-BC and CCR-BC, as ρ gets closer to unity, the SP rule is more
likely to give the smallest bias among three bandwidth choice rules.

• Due to the structure of the error term, the experimental design is
favorable to the A rule. Nonetheless, estimators based on the A rule
are often most biased.
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