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Abstract

We reexamine the robustness of the inference from the least-squares
estimator under hetero-skedasticity and autocorrelation of unknown
form in a generic multifactor asset pricing model. It is shown that the
asymptotic covariance matrix of the least-squares estimator of betas
depends only on the long-run cokurtosis of factors and error terms,
whereas that of alphas depends not only on the long-run cokurtosis but
also on the long-run coskewness of factors and error terms. We
numerically evaluate the celebrated Fama-French three-factor model
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using the U.S. data and find considerable changes in sizes of
asymptotic variance estimates of the least-squares estimator of alphas
and betas due to nonnormality and serial dependence.

1. Introduction

Estimation and testing of asset pricing models are fundamental in
financial economics and financial econometrics. Questions of their empirical
validity have created an enormous amount of research. One important
direction of the study is robustness of the inference of asset pricing models
against underlying assumptions made. Testing mean-variance efficiency of a
given portfolio has been popular as testing Sharpe [12] and Lintner’s [8)
capital asset pricing model. Assuming normality on stock returns, Gibbons et
al. [4] provided a well-known exact test. MacKinlay and Richardson 9
investigated the robustness of the test by studying the effect of nonnormality
of the underlying distribution on the asymptotic distribution of the least-
squares estimator (“LSE”), and propose an asymptotic test based on the
asymptotic covariance matrix of the LSE under nonnormality, i.e., the
generalized method of moments by Hansen [5]. Zhou [13] proposed another
exact test assuming a class of elliptical distributions for the underlying
distribution. Ando and Hodoshima [1] shown how nonnormality affects the
inference of the LSE of alphas and betas by deriving the asymptotic
covariance matrix formulas for the LSE of alphas and betas when the
underlying data-generating process (“DGP”) is independently and identically
distributed (“i.i.d.”) but not restricted to be normal. In these works, the main
focus has been on whether the underlying distribution is normal or not while
the i.i.d. assumption is maintained.

This note aims at studying the robustness of the inference based on the
LSE in a generic multifactor asset pricing model under heteroskedasticity
and autocorrelation of unknown form. Ando and Hodoshima [1] studied the
robustness of the LSE of alphas and betas in the generic multifactor asset
pricing model when factors and error terms are jointly i.i.d. with finite fourth
moments and the joint distribution may not be normal. They find that the
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asymptotic covariance matrix of the LSE of betas depends on the cokurtosis
of factors and error terms, whereas that of alphas depends not only on the
cokurtosis but also on the coskewness of factors and error terms. This implies
that the asymptotic covariance matrix of the LSE of betas depends on the
degree of tail-thickness of the underlying joint distribution but not on
skewness measures of the distribution. In this note, we relax the i.i.d.
assumption of the underlying joint distribution and investigate the asymptotic
covariance matrix of the LSE of alphas and betas under heteroskedasticity
and autocorrelation of unknown form. We demonstrate that while the
asymptotic covariance matrix of the LSE of betas depends only on the long-
Tun cokurtosis of factors and error terms, that of alphas depends not only on
the long-run cokurtosis but also on the long-run coskewness of factors and
error terms. In other words, the result of Ando and Hodoshima [1] under the
iid. nonnormal assumption is shown to continue to hold under the
assumption of heteroskedasticity and autocorrelation of unknown form.

Obtaining the asymptotic covariance matrix of the LSE under
heteroskedasticity and autocorrelation of unknown form is not new.
However, to the best of our knowledge, the asymptotic covariance matrix for
subsets of parameters in the generic multifactor asset pricing model has
never been derived explicitly in the context of heteroskedasticity and
autocorrelation of unknown form. Our asymptotic covariance matrix
formulas of the LSE of alphas and betas in this framework are new and
should be useful to reveal how nonnormality and serial dependence of the

underlying joint distribution affect the inference from the LSE of alphas and
betas.

Based on the analytical result we present, we reexamine the robustness
of the Fama-French three-factor model under heteroskedasticity and
autocorrelation of unknown form using the U.S. monthly and daily data. The
model proposed by Fama and French [3] is quite popular and one of the
benchmark asset pricing models. We find substantial effects of nonnormality
and serial dependence on sizes of asymptotic variance estimates in the
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Fama-French three-factor model, particularly in daily data. Typically, the
asymptotic variance estimate becomes larger under heteroskedasticity and
autocorrelation of unknown form than under the i.i.d. normal or nonnormal

assumption.

This note is organized as follows: Section 2 derives the asymptotic
covariance matrix of the LSE of alphas and betas in the multifactor asset
pricing model. Section 3 reexamines the Fama-French three-factor model
using the U.S. monthly and daily data when the asymptotic long-run
covariance matrix derived in Section 2 is estimated by the method of
heteroskedasticity and autocorrelation consistent (“HAC”) covariance matrix
estimation. Section 4 presents concluding comments. Appendix provides a
set of regularity conditions for HAC estimation.

2. The Asymptotic Covariance Matrix of the LSE in the Multifactor
Asset Pricing Model

2.1. The model

Let R, e RY and f, = (fis - fK,)' e RX be vectors of N asset
retums and K factors, respectively. Given T observations {(R, f,)}z;l,

consider a multifactor asset pricing model
R, =a+Pfy +-+BxSki + & M

where parameter vectors @ € RY and p = (B}, ... Bk) € RMK are referred
to as “alphas” and “betas”, and €, € RY is the vector of error terms. For a
more concise expression of (1), define the N x (K +1) parameter matrix ©
as © = [a By---Bx), and write X, =(l, f,’)'. Then, equation (1) can be
rewritten as

R, = OX, +¢,.

The error terms &, is assumed to have mean zero, i.e., E(g,)=0.
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2.2. The asymptotic covariance matrix of the LSE of ® under
heteroskedasticity and autocorrelation of unknown form

For the vector process v, = vec(g,X}), we assume that E(v,) = 0 holds,

ie., & and X, are uncorrelated. This assumption ensures the consistency of
the LSE given by

T T -
0= ZR,X}[Z x,x;J .
t=1 t=1

The asymptotic distribution of VT (8 —8) = VT {vec(®) - vec(@®)} is also
given by

JT(0 - a)i N(0, V)

for some N(K +1)x N(K + 1) asymptotic covariance matrix V. When v,

has heteroskedasticity and autocorrelation of unknown form, V can be
expressed as

V=HlsH", )
where

1 E®f)

H=FQ®Iy = EX,X,)®Iy = [E(f) E(”,)]m,,,,
t (]

with F = E(X,X;), and S is the long-run covariance matrix (“LRCM™) of
the process v, that takes the form of

[*o] [>o] o
S= ) T(M)= Y Evvi)= Y E(XXi_ ®cgi ).
|=—0 |=—0 |=—0

The final equality is established by recognizing v, = X, ® g,. Observe
that if v, has no serial dependence, then S reduces to Sy =TI, (0) =
E(X,X] ® g,£]) so that V is simplified as
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Vo = H7'sgH™".
Moreover, as argued in Ando and Hodoshima [1], when the joint distribution

of (g}, f; )' is i.i.d. normal, V collapses to
Vg = F! ® E(g¢)).
Notice that F can be rewritten as
1 Iy
F= [u T uu’]’
where p = E(f;) and V, = Var(f;) is the instantaneous covariance matrix

of f,. Then, we have

-1 1+ p'vflu _u'vfl
F' = vl va [
In S

When v, has heteroskedasticity and autocorrelation of unknown form
1

o0
' ’ -1
V=(F"@ly) Y E(XXi_ ®eei)(F ®ly)

l=—0
= S E(YYi ® g, @)
|=—c0
where
1- w7, - p)
v, = Fx, = | V6w @
\Z: & -n

Now partition V as

¥V, \%
v =[ X 12]’
Vi2 V
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Observe that V;) € RYV and v,, ¢ RVK*NK correspond to the asymptotic
covariance matrix of V7T(d-a) and VT ®-p), respectively, whereas
V)2 € RY*MK s the asymptotic covariance matrix between VT (a-a) and

JT (B - B). Furthermore, we often refer to diagonal elements of V| and

V3, as asymptotic variances of the LSE of alphas and betas, respectively.

A straightforward calculation using (3) and (4) yields the following
explicit forms of the block matrices:

Vi = D E[ - wVE(E - wH - WV (G - w) @]
l=—

D B )+ WV ®1y)

{=—0

Q0

x D E( ~w) (i - 1) @5} (VinSIy)

I=—

~WVF ®1y) Y (T, - ) ® 5}

I=—0

@

= D E(fi - 1) B} (Vin®ly)

{=—0

0

= D Elegi) + (W ®Iy)Vy(u ®1y)

l=—0

~(WV7 @ Ly) D E((l, - n) ® 5}

|=—0

-[(u’ 7' ®1y) Y E{(f, -n)® 818;-1}] ,

==
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0 R ] -1 ,
Vig = 3Bl -pVE @ - wH (G - m) V) ® £e-1]
l=—(!)

E{(f,— - w) ®eg-}(VF ®1y)

Ms

!

i

- (V7 ®ly) is{(f, — W) - n) ®eg} (V7 ®1y)

l=—0
'

= [(V}' ®1Iy) iE{(f: -n)® 8:8}—/}] -0 ®Iy) Va2,

l=—c0

s R (P
Vy = ZE{V}I(fr - -n)Vy ® 21}

[=—00

= (V' ®1y) iﬁ{(f, — ) (€ - ) ®gz ) (V7 ®1y)

|=—c0

We can see that Vy, depends only on z(;;_w E{f, -n)(f- -n) ®

£,€_;}, which is proportional to the long-run cokurtosis of f, and &. In

© _ ’
contrast, both V;; and V}, depend not only on o Bl - (- —n)

® g,5;_;} but also on ZT:_& E{(f, - p)® &£}, whichis proportional to
the long-run coskewness of f; and &.

Therefore, while the asymptotic covariance matrix of the LSE of betas

depends only on the long-run cokurtosis of factors and error terms, that of

alphas depends not only on the long-run cokurtosis but also on the long-run

coskewness of factors and error terms. It is worth mentioning that the
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asymptotic covariance matrix of the LSE of betas has nothing to do with any
skewness measures. This implies that the result of Ando and Hodoshima [1]
continues to hold when the underlying joint distribution of factors and error

terms exhibits heteroskedasticity and autocorrelation of unknown form.

3. Reexamination of the Fama-French Three-factor Model

3.1. Data description

In this subsection, we illustrate how heteroskedasticity and
autocorrelation of unknown form in v, affect the asymptotic variance
estimates of the LSE in the Fama-French three-factor model. The data set has
been downloaded from Kenneth French’s web page. Asset returns are 25
value-weighted returns on the intersections of 5 portfolios formed on size and
5 portfolios formed on the ratio of book equity to market equity. Factors

include the excess return on the market (R,, — Ry), the average return on the

three small portfolios minus the average return on the three big portfolios
(SMB), and the average return on the two value portfolios minus the average
return on the two growth portfolios (HML). Hence, we can see that
(N, K)=(25, 3). Two data frequencies (monthly, daily) are considered, and
sample periods are July 1963 - August 2008 and July 1, 1963 - August 29,
2008 for monthly and daily data, respectively. We remark that August 2008
is one month before the Lehman shock. We avoid including observations
after the Lehman shock in order not to mix observations of different nature
into the sample. As a consequence, numbers of observations are 542 and
11370 for monthly and daily data, respectively.

3.2. Estimation of the LRCM

To obtain estimates of the asymptotic variances of the LSE of alphas and
betas, we must estimate the covariance matrix (2). The Hessian matrix H can

be consistently estimated by its sample analog
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T
1 1/T) f,
A=F®Iy = r U ZTH &1
WnYy, & WY,

On the other hand, to estimate the LRCM S, we employ HAC estimation.

HAC estimation of S can be implemented as follows. First, because v, is
unobservable due to error terms g, it is replaced by v, =X, ®¢,, where
g =R, - ©X, is the LSE residual. Second, T, (/) (= the /th autocovariance

of v,) can be estimated by its sample analog based on v, ie.,

min{T+{,T}
t S =0, 21, £ (T - 1).

t=max{l, 1+/}

~|—

Third, given a kernel k() and a bandwidth M(>0), we finally obtain the

HAC estimator of S as
a 1 - I
S = k M I"V( )

Regularity conditions for the consistency of S are given in Appendix. As

a consequence, the asymptotic covariance matrix V can be consistently

estimated by v=Ha"SH"

Computing the HAC estimate S requires us to choose the kernel k()

and the bandwidth M. It is well-known that choosing the latter is more
important than choosing the former. Hence, we first choose a kernel and then
we adopt the bandwidth choice method that is expected to match most
suitably with the kernel. Specifically, we consider the following three kemel
and bandwidth combinations: (i) the Quadratic Spectral (“QS”) kernel and
Andrews’ [2] bandwidth; (ii) the Bartlett (“BT”) kernel and Newey and
West’s [10] bandwidth; and (iii) the Parzen (“PZ”) kernel and Hirukawa’s [6]
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bandwidth. Each of the first two methods relies on an explicit formula and is
applied popularly in empirical works. On the other hand, the third method
yields a bandwidth value via solving a nonlinear equation numerically.
Monte Carlo simulations in Hirukawa [6] indicate superior performance of
this method over other two methods in terms of LRCM estimation. A brief
comparison of these three approaches can be also found in Section 2 of

Hirukawa [7]. We finally make a few remarks on the details of implementing
the methods.

(1) For Andrews’ [2] bandwidth, a first-order autoregressive (“AR(1)”)

model is fitted to each element of v,. The weight w, in &(2) (see equation

(6.4) of Andrews [2]) takes zero for the first N elements of v, (that

correspond to intercepts, i.e., alphas) and one for the rest.

(2) For Newey and West’s [10] bandwidth, the N(K + 1)-dimensional

column vector of weights on v, (see p. 634 of Newey and West [10]) is set

equalto w = (0, .., 0, 1, ..., l)', where the first N elements (that correspond
to intercepts, i.e., alphas) are zeros. Also, the lag selection parameter (see
equation (3.10) of Newey and West [10]) is set equal to n = [4(T/100)2/ %1,

where [] denotes the integer part.

(3) For Hirukawa’s [6] bandwidth, the N(K + 1)-dimensional weight
vector w is the same as the one used for Newey and West’s [10] bandwidth.
Then, an AR(1) model is fitted to a scalar process w'¥, to obtain &(2) on

p- 718 of Hirukawa [6].
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Table 1. Least-squares estimates and asymptotic variance estimates of Fama-
French three-factor models (monthly data)

Masayuki Hirukawa and Jiro Hodoshima

Panel (a):
alphas betason R, - R,
Asymptotic variance estimate Asymptotic variance estimate
HAC HAC
LSE Robust  Normal Qs BT Pz LSE Robust  Normal Qs BT PZ
Al 0008 5.227 5.470 5359 8214 6777 1011 0.388 0.342 0.387 0502 0446
A2 0455 3.100 2989 2973 4562 3Mm8 0.965 0.262 0.187 0365 0427 0412
A3 0464 1.970 1.991 1992 3247 2456 0.921 0.163 0.124 0.160 0211 0179
A4 0617 1903 1.996 1923 3068 2467 0.893 0.195 0.125 0210 0220 0.192
AS 0586 20717 2123 2110 2338 2316 0976 0.193 0.133 0229 0240 0250
Bl 0278 27121 2.831 3092 3848 3312 1us 0.195 0177 0244 0349 0328
B2 0382 2286 2364 2436 3783 2968 1.029 0.181 0.148 0214 0274 0262
B3 0567 2045 2022 2105 2689 2262 0977 0.184 0126 0224 0280 0256
B4 0545 2021 1.924 2352 3613 2764 0.976 0.127 0.120 0.131 0.140 0.41
BS 0458 2232 2086 2,523 3.655  3.124 1.079 0.168 0130 0186 0249 0208
Cl 0414 2.529 2.551 2548 2623 2356 1.082 0212 0.159 0207 0230 0214
C2 0488 2.920 2.986 3096 3452 3278 1.057 0.279 0.18 0295 0417 0362
C3 0445 2611 2.797 2907 3376 3.193 1.018 0.268 0.175 0348 0512 0461
ca 0471 2.526 2.533 2642 3715 30t1 1.006 0.185 0158 0198 0243 0211
Cc5 0509 an 3225 3222 3441 3464 1.098 0.306 0.201 0370 0401 044)
DI 0606 2.708 2464 3074 4910 4063 1.054 0.244 0.154 0.242 0258 0244
D2 0332 3.079 3.163 3679 4467 4189 1.096 0.350 0.197 0401 0448 0452
D3 0411 2.868 3.157 3169 3254 3.007 1.081 0.316 0.197 0.345 0417 04l
Ds 0512 2.685 2.757 2496 2681 2476 1.036 0278 0172 0247 0288 0279
D5 0352 4.346 4255 4477 3869 3.960 1162 03713 0266 0443 0577 0548
El 0665 1615 1.604 1.822 2423 2186 0.955 0.151 0.100 0.185 0252 0228
E2 0478 2257 2229 2455 3103 2748 1.030 0.182 0139 0185 0240 021
E3 0382 3257 3087 3794 3983 3745 0989 0.259 0.193 0312 039 0362
E4 0348 2294 2383 2306 2625 2512 0.996 0.183 0.149 0174 0213 0.197
ES 02713 4613 4.888 4911 5403 4.989 1.059 0479 0.305 0535 0840 0718
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Panel (b):
betas on SMB betas on /ML
Asymplotic veritnce estimate Asymplotic variance estimate
HAC HAC
LSE  Robust Nomsl QS BT PZ LSE  Robust Normal QS BT 73
Al 1364 1.089 0574 0963 1.043 0893 -0.332 122 0.765 1404 1213 1335
A2 1307 0.964 0313 1394 1824 1732 0.051 0.948 0418 1094 1459 1428
A3 1091 0.390 0.209 0370 0487 0446 0291 0511 0278 0428 0658 0533
A4 1028 0.469 0.209 0491 0470 0429 0453 0.488 0279 0452 0622 0507
AS 1074 0.598 0.223 0202 0917 0387 0.677 0.630 0.297 0.733 0854 0845
Bl 0980 0.521 0.297 0598 0656 0673 -0.402 0.729 0.396 0.795 1431 1010
B2 0861 0.556 0.248 0805 1418  1.280 0.162 0.791 0331 L1195 2908 2097
B3 0760 0.658 0212 0856 1476 1289 0407 0 0.283 1173 2793 2.009
B4 0712 0.283 0.202 0342 0611 0524 0.579 0.500 0.269 0697 1777 1210
BS 0852 0.293 0219 0389 0603 0563 0.781 0.407 0.292 0449 0707 0591
Cl 0715 0.481 0.268 0453 0438 0416 -0.455 0.571 0357 0.526 0590 0.526
€2 0513 0.910 0313 1382 2394 227 0213 1.089 0418 1.648 4124 23862
C3 0425 0.868 0293 1285 2211 2009 0.489 0.879 0.391 1413 1736 2576
C4 03719 0.556 0.266 0800 1522 1330 0.662 0.793 0.354 1275 3328  2.287
Cs 0527 0.957 0.338 1601 2334 2234 0.824 0.853 0451 1044 2,108 1564
DI 0363 0.898 0.258 0857 0648 0738 -0.445 0.801 0344 0835 0778 0.84)
D2 0200 0.901 0332 1.288 1890 1.796 0247 1118 0.442 1.784 4329 3.085
D3 0.6l 0.988 0.331 1215 1954  1.845 0.491 1.018 0.441 1.563 13988 2691
D4 021 0.545 0.289 0457 0348 0391 0.609 0.736 0385 1.008 1801 1.466
D5 0234 0.7% 0.446 1.088 1.743  1.566 0.819 0.787 05?5 1064 1715 1460
El 0262 0282 0.168 0388 0413 0442 -0.389 04n 0.224 0.504 0842 0699
E2 0234 01382 0.234 0441 0701 0617 0.130 0.721 0312 0932 2237 1517
E3 0237 0559 0324 0622 0793  0.760 0.303 0.857 0.432 0996 1501 1.274
E4 0220 0314 0.250 0375 0606 0.538 0613 0.573 0.333 0739 1.784 1.284
E5 -0.095 L 0.513 1.096  0.983 1018 0.785 1.405 0.683 1242 0834 0844

Note: Each portfolio return is expressed as a combination of a letter denoting the size (A to E)
and a number denoting the ratio of book equity to market equity (1 to 5), where A and 1 are
the smallest and E and 5 are the largest. The LSE means the least-squares estimate of the
parameters. “Robust” and “Normal” are obtained from diagonal elements of estimates of V,

and Vg, respectively. “HAC” denotes diagonal elements of estimates of V, where “QS”,

“BT” and “PZ" are HAC estimates using the Quadratic Spectral kemel and Andrews’ [2]
bandwidth, the Bartlett kernel and Newey and West’s [10] bandwidth, and the Parzen kernel
and Hirukawa's [6] bandwidth, respectively.
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Table 2. Least-squares estimates and asymptotic variance estimates of Fama-
French three-factor models (daily data)

Panel (a):
alphas betason R, ~ R,
Asymptotic variance estimate Asymptotic variance estimaie
HAC HAC
LSE Robust Nommal QS BT PZ LSE  Robust Nomal QS BT PZ
Al 0009 0175 0173 0220 0360 0320 1101 O8I1 0331 1297 3355 2624
A2 0018 0.12 0110 0120 0163 0158 0984 0484 0211 0734 L1752 138
A3 0022 0088 008 0093 0.118 01l 0890 0506  0.65 0803 2031 1540
A4 0030 0073 0071 0079 0114 0.05 0846 0465 0137 0949 2483 1810
AS 0032 0062 0062 0081 0142 0127 0877 0247 0118 0474 1552 1109
Bl 0007 0119 0117 0130 0163 0.5 117 0406 0225 0583 1518 1082
B2 0016 0088 0088 0092 0109 0104 1044 0327 0169 0509 1177 0927
B3 0026 0077 0077 0081 0095 0094 0984 0272 0148 0490 1433 1048
B4 0025 0072 0072 0077 0106 0096 0970 0298 0438 0500 1417 1029
BS 0020 0095 009 0093 0.20 0.105 1122 0663 0181 1122 2593 2164
Cl 0017 0120 0419 0120 0123 0125 1012 0467 0228 0748 1617 1276
C2 0024 0089 0089 0112 0I37 0137 0995 0266 0171 0500 1150 0901
C3 002 -009% 0089 0104 0I26 0122 0943 0368 0171 0705 2217 16l
Ca 0024 0092 0093 0107 0128 0127 0949 0518 0178 1183 3586 2738
Cs 0024 0.133 0.133 0.132 0.157 0.149 1.102 0.623 0.255 1.224 4065 2,750
DI 0026 0120 0120 0116 0141 0125 107 0301 0230 0716 1729 1368
Dz 0017 0105 0103 0120 0154 0.144 0982 0525 0198 1244 2580 2116
D3 0020 0102 0102 0124 013 0139 0979 0560 0195 1289 3239 2750
D4 0023 Ol 0110 012 0114 0117 1000 0496 0210 0852 1892  1.600
DS 0017 OI81 0178 0189 0182 0.8 1106 0819 0341 143 3100 2270
El 0032 0053 0053 0069 0082 0079 0960 0275 0102 0459 1384 1076
0023 009 0094 0098 0111 0106 0983 0491 0179 0600 1141 0981
E3 0016 0130 0130 0136 0150 0.142 0999 0555 0249 0936 2589 1918
0014 0420 0017 0413 014 0113 1018 0682 0223 0712 1160 0986
ES 0008 0.8 084 0207 02600 0242 1148 0709 0353 1205 2709 1980
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Panel (b):
betas on SMB betas on HML
Asymptotic variznce estimate Asymptotic variznce estimate
HAC HAC
LSE Robust  Normal Qs BT Pz LSE Robust  Normal Qs BT PZ
Al 1145 2.352 0.788 4729 9803 7921 -0.001 3.497 1.224 5.501 15542 10498
A2 1024 1.361 0.502 2396 6919 5095 0.206 2.361 0.780 4855 17129 11.545
A3 0884 0.788 0.393 1.131 2900 2123 0.343 1.807 0611 3.588 15.703 10.045
A4 0847 0.755 0328 0933 2409 1.726 0436 1.447 0.505 2403 8122 5.389
AS 0862 0.768 0.281 1196  2.761 2.085 0.564 1.019 0437 2131 B.004 5.306
Bl 1014 1.001 0.536 1107 2164 L8 -0.208 2244 0832 4.027 14730 9543
B2 0.886 0.900 0.402 1410 3294 2588 0212 1.486 0.624 357 12553 8325
B3 0840 0.695 0.353 1235 4235 2940 0378 L3 0.549 2548 9357 6.272
B4 079 0914 0.328 1928 6738 4900 0.548 1.142 0.509 2.543 7305 5212
BS 0873 0.992 0431 1756 4974 3835 om 2132 0.669 4440 13984 10783
Cl  0.75% 1.072 0.542 1413 3196 2423 -0.380 1.856 0.842 2678 4575 3.839
Q2 0636 1.066 0.407 2043 6378 4770 0.142 1.290 0.632 2230 7.589 5240
€3 0570 1.508 0407 3162 10428 7302 0.400 1.487 0.632 3.289 11906 8033
C4 0518 1.347 0424 331 11271 8583 0.538 2.401 0.659 5998  19.131  14.090
C5 0553 1.926 0.607 2823 7211 5.603 0.761 2.065 0.942 3724 12218 8232
DI 0418 1712 0.548 2502 728 5420 -0.367 2307 0.851 4404 118302 8963
D2 0300 3.687 0471 4337 7490 6330 0.190 2.506 0.731 5111 21783 14496
D3 0285 3.336 0.465 4035 8128 6.742 0.422 28717 0.722 7271 26153 19368
D4 0283 1457 0.501 1936 3.072 2416 0.630 2.847 0.778 6.621 24375 16.992
D5 0258 3475 0811 4616 1291 6.290 0.800 2.763 1.261 4421 15235 10034
El 0346 0.666 0.243 1184 3.582 2.765 <0454 L3 0.377 2384 8335 6.017
E2 029 1428 0.428 2136 4436 3413 0.098 2351 0.664 5.082 21.291 13.801
E3 0236 2687 0.594 3068 6179 4901 0.350 2557 0.922 4984 18.128 11987
E4 .0224 5.542 0.532 7126 8541 7944 0.671 awms 0.827 4472 12440 8483
E5 -0170 2000 0.841 2029 3227 2711 0.955 2.766 1.306 37194 8473 6.328

Note: Each portfolio return is expressed as a combination of a letter denoting the size (AtoE)
and a number denoting the ratio of book equity to market equity (1 to 5), where A and 1 are
the smallest and E and 5 are the largest. The LSE means the least-squares estimate of the
parameters. “Robust” and “Normal” are obtained from diagonal elements of estimates of V,

and Vg, respectively. “HAC” denotes diagonal elements of estimates of V, where “QS”,

“BT” and “PZ” are HAC estimates using the Quadratic Spectral kernel and Andrews’ [2]
bandwidth, the Bartlett kernel and Newey and West’s [10] bandwidth, and the Parzen kernel
and Hirukawa's [6] bandwidth, respectively.

3.3. Estimation results

Tables 1-2 present the LSE of alphas and betas and their asymptotic
variance estimates for monthly and daily data. Differences in the LSE
between monthly and daily data are substantial in alphas but not much in
betas. Typically, the LSE of alphas in monthly data are 20 times as large as
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that in daily data, which seems to reflect the difference in portfolio returns of
the two data. Asymptotic variance estimates of V are computed based on
three HAC estimates (i.e., QS, BT and PZ), as well as estimates of Vp
(labeled as “Robust”) and Vg (labeled as “Normal”) that are valid in the

absence of serial dependence in v, and under the i.i.d. normal assumption on

(g, f,')', respectively. Estimated bandwidth values for HAC estimation are
2.133 (QS), 12.131 (BT) and 8.956 (PZ) for monthly data, and 6.689 (QS),
65.800 (BT) and 49.628 (PZ) for daily data. After comparing three HAC
estimates on a given LSE, we can see a general tendency in the order of QS,
PZ and BT from the smallest to the largest in terms of the size of a variance
estimate. It is also conspicuous that BT tends to generate by far the largest
asymptotic variance in the estimation results of monthly and daily data.

Differences between the estimates of V and Vg (or Vi) depend on data
frequencies and factors. A quick examination reveals that as regards alphas,
the differences are relatively small for each of monthly and daily data,
whereas estimates of BT (in particular) and PZ (to a lesser extent) tend to
take large values compared to those of Vg, Vo, and QS. As regards betas, in
contrast, the differences in the size of variance estimates are more distinct
and particularly remarkable in all three factors for daily data. For monthly
data, the differences are small in the excess market return, whereas they are

considerable in other two factors between the estimates of V (or Vg) and
Vg. It appears that discrepancies in the estimates of V and Vj rather depend
on the choice of portfolio and combination of kemnel and bandwidth. For
daily data, the size differences of variance estimates are large for all three
factors, in particular between V (or Vo) and Vg. There are also substantial
differences between V and V. These findings suggest that we should take

effects of nonnormality and serial dependence into account, in particular,

when evaluating precision of the LSE of betas from daily data.
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4. Conclusion

We have derived the asymptotic covariance matrix formulas for the LSE
of alphas and betas under heteroskedasticity and autocorrelation of unknown
form in a generic multifactor asset pricing model. Particular attention has
been paid to how nonnormality and autocorrelation affect the asymptotic
covariance matrix of the LSE of alphas and betas. It is demonstrated that the
asymptotic covariance matrix of the LSE of betas depends only on the long-
run cokurtosis of factors and error terms, whereas that of alphas depends not
only on the long-run cokurtosis but also on the long-run coskewness of
factors and error terms. It is worth noting that the asymptotic covariance
matrix for betas is free of skewness measures. We have also reexamined the
robustness of the benchmark Fama-French three-factor model using the U.S.

monthly and daily data when HAC estimators are employed for the LRCM
estimation.

Examining empirical models under alternative scenarios of the
underlying DGP, namely, iid. normal, i.id. nonnormal, and
heteroskedasticity and autocorrelation of unknown form, has been
established in econometrics for many years. The exercise is also quite useful
in asset pricing modeling to extract information, as we did in this note, about
whether particular assumptions on the underlying DGP are satisfied or not, or
more specifically about how nonnormality and serial dependence affects the
asymptotic variance estimates of alphas and betas. Quite nicely, it is not
laborious! We hope that our reexamination of the Fama-French three-factor

model serves as a good empirical exercise of the robustness study.
A. Appendix: Regularity Conditions on HAC Estimation

For the HAC estimator § (and thus V) to be consistent, we need the

following assumptions. A sufficient condition for Assumption 1 is strong

mixing with some size plus moment bounds. Popular choices of kernels such
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as QS, BT and PZ satisfy Assumption 2. In particular, ¢ =1 for BT and
g = 2 for QS, PZ. Assumption 3 requires a (deterministic) sequence of the
bandwidth M to diverge to infinity at a slower rate than the sample size T.

In reality, however, most applications including this paper consider an
automatic (i.e., a data-driven) bandwidth, which is a stochastic sequence by
construction. For such a stochastic bandwidth to deliver consistency in HAC
estimation, we must impose additional technical conditions, which vary
across three bandwidth choice methods considered in this paper. To save
space, we concentrate on regularity conditions when the bandwidth M is a
deterministic sequence.

Assumption 1. The process v, is a zero-mean, fourth-order stationary

sequence that satisfies
[}
2NEITO <
[=-0
and

| Ky, i0,53,i4 (@ By ©) | < o0,

Ms

>

b=-w ¢

3

e

a
where | A| signifies the Euclidean norm of matrix A, ie., [A[=

{tr(A'A)}'/ 2, g €(0, ) is the characteristic exponent of the kernel k(")

(Parzen [11]) that satisfies

= lim uc_(x_) € (0, ),
x—0 |x lq

kq

[,(/) denotes the /th autocovariance of v, K i, is iz (@ b, c) is the fourth-
order cumulant of (v,-l’,, Viy,t+as Vig,t+a+b> Vi4'l+a+b+c)’ and v;, is the

ith element of v,.
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Assumption 2. The kemel () satisfies k : R — [-1, 1}, (0) = 1, k(x)

= k(~x), Vx € R, k() is continuous at 0 and almost everywhere, and

I: k(x)dx < oo, where k(x) = sup s | k(»)|.

Assumption 3. The bandwidth M(= M) satisfies I/M + M7 /T — 0

as T — oo,
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