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a b s t r a c t

Two classes of multiplicative bias correction (‘‘MBC’’) methods are applied to density es-
timation with support on [0, ∞). It is demonstrated that under sufficient smoothness of
the true density, each MBC technique reduces the order of magnitude in bias, whereas
the order of magnitude in variance remains unchanged. Accordingly, the mean integrated
squared error of each MBC estimator achieves a faster convergence rate of O


n−8/9


when

best implemented, where n is the sample size. Furthermore, MBC estimators always gener-
ate nonnegative estimates by construction. Plug-in smoothing parameter choice rules for
the estimators are proposed, and their finite sample performance is examined via Monte
Carlo simulations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hirukawa (2010) applied two classes of fully nonparametric multiplicative bias correction (‘‘MBC’’) methods originally
proposed for density estimation using symmetric kernels to estimate the density with support on [0, 1] via nonstandard
smoothing by the Beta kernel (Chen, 1999). This paper extends the analysis to estimating the densitywith support on [0, ∞)
by asymmetric kernels (Chen, 2000; Jin and Kawczak, 2003; Scaillet, 2004). Let Kj(x,b) (·) be the asymmetric kernel indexed
by j that depends on a design point x > 0 and a smoothing parameter b > 0. Given a random sample {Xi}

n
i=1 drawn from

a univariate distribution with density f that has support on [0, ∞), the density estimator using asymmetric kernel j can be
expressed as

f̂j,b (x) =
1
n

n
i=1

Kj(x,b) (Xi) . (1)

Throughout, the kernel j refers to one of the Gamma (‘‘G’’), Modified Gamma (‘‘MG’’), Inverse Gaussian (‘‘IG’’), Reciprocal
Inverse Gaussian (‘‘RIG’’), Log-Normal (‘‘LN’’),2and Birnbaum–Saunders (‘‘BS’’) kernels. Functional forms of these kernels are
presented in Table 1. Asymmetric kernels have originally emerged as an alternative to boundary correction methods; see,
for instance, Karunamuni and Alberts (2005) for a brief review of the methods. Indeed, because all kernels in Table 1 have
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1 Tel.: +81 3 3244 1241; fax: +81 3 3270 7084.
2 Our definition of the LN kernel slightly differs from the original one in Jin and Kawczak (2003). This definition ensures that the leading variance of the

density estimator (1) becomes n−1b−1/2f (x) /

2
√

πx

for a design point x > 0 so that x/b → ∞ as b → 0.
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Table 1
Functional forms of asymmetric kernels.

Kernel (j) Functional form (u ≥ 0)

G (Chen, 2000) KG(x/b+1,b) (u) = ux/b exp (−u/b) /

bx/b+1Γ (x/b + 1)


.

MG (Chen, 2000) KMG(ρb(x),b) (u) = uρb(x)−1 exp (−u/b) /

bρb(x)Γ {ρb (x)}


,

where ρb (x) =


x/b for x ≥ 2b
(1/4) (x/b)2 + 1 for x ∈ [0, 2b) .

IG (Scaillet, 2004) KIG(x,1/b) (u) =
1

√

2πbu3
exp


−

1
2bx

 u
x − 2 +

x
u


.

RIG (Scaillet, 2004) KRIG(1/(x−b),1/b) (u) =
1

√
2πbu

exp

−

x−b
2b

 u
x−b − 2 +

x−b
u


.

LN (Jin and Kawczak, 2003) KLN(log x,b) (u) =
1

u
√
2πb

exp

−

(log u−log x)2

2b


.

BS (Jin and Kawczak, 2003) KBS(b1/2,x) (u) =
1

2x
√
2πb

 x
u

1/2
+

 x
u

3/2 exp

−

1
2b

 u
x − 2 +

x
u


.

support on [0, ∞), they are free of boundary bias near the origin. Besides, the kernels havemany other appealing properties,
including locally adaptive smoothing via changing their shapes and ‘shrinking variance’ with the position of x.3

Below we formally define two MBC estimators built on the density estimator (1). Throughout (1) is called the bias-
uncorrected (‘‘BU’’) estimator to distinguish it from MBC estimators. In the spirit of Terrell and Scott (1980, abbreviated
as ‘‘TS’’ hereafter), the first class of MBC techniques constructs a multiplicative combination of two density estimators
employing the same kernel but different smoothing parameters. Let f̂j,b/c (x) be the density estimator using asymmetric
kernel j and smoothing parameter b/c , where c ∈ (0, 1) is some predetermined constant that does not depend on the
design point x. Then, the TS-MBC asymmetric kernel density estimator can be defined as

f̃TS,j (x) =


f̂j,b (x)

 1
1−c


f̂j,b/c (x)

−
c

1−c
. (2)

On the other hand, the second class of MBC techniques due to Jones et al. (1995, abbreviated as ‘‘JLN’’ hereafter) utilizes a
single smoothing parameter b. In light of the identity f (x) = f̂j,b (x)


f (x) /f̂j,b (x)


, the JLN-MBC asymmetric kernel density

estimator can be defined as

f̃JLN,j (x) = f̂j,b (x)


1
n

n
i=1

Kj(x,b) (Xi)

f̂j,b (Xi)


. (3)

Recognize that the term inside the bracket is a natural nonparametric estimator of the bias-correction term f (x) /f̂j,b (x).
Also observe that both f̃TS,j (x) and f̃JLN,j (x) are free of boundary bias and always generate nonnegative density estimates
everywhere by construction.

Following the convention, this paper refers to the position of x as ‘‘interior x’’ if x/b → ∞, and ‘‘boundary x’’ if x/b → κ
for some constant κ > 0, as b → 0. As demonstrated shortly, under sufficient differentiability of f , bias convergence of each
MBC estimator is accelerated from O (b) to O


b2


, whereas the order of magnitude in variance remains unchanged from the

one for (1), i.e. it is still O


nb1/2
−1


for interior x. Accordingly, the mean integrated squared error (‘‘MISE’’) of each MBC

estimator for interior x takes the form of O

b4 + n−1b−1/2


. Therefore, when best implemented, each estimator can achieve

the convergence rate ofO

n−8/9


inMISE, which is faster thanO


n−4/5


, theMISE-optimal convergence ratewithin the class

of nonnegative kernel estimators (Stone, 1980). Moreover, to implement MBC estimators employing the G and MG kernels,
this paper proposes plug-in methods of choosing the smoothing parameter bwith gamma density used as a reference.

A few articles other than Hirukawa (2010) have investigated bias reduction methods for density estimation via
nonstandard smoothing when the support has a boundary. Hagmann and Scaillet (2007) and Gustafsson et al. (2009) study
semi-parametric MBC methods for density estimation with support on [0, ∞). Each method employs asymmetric kernels
at the bias correction step after initial parametric density estimation. Unlike MBC methods in this paper, their approaches
do not improve the bias convergence in order of magnitude. Moreover, Leblanc (2010) explores a bias reduction method for
estimating the density with support on [0, 1] using Bernstein polynomials, and establishes acceleration in bias convergence.
However, he adopts an additive bias correction, and thus the bias-corrected estimator does not always generate nonnegative
estimates unlike the one in Hirukawa (2010).

The remainder of this paper is organized as follows. Section 2 presents asymptotic properties of twoMBC estimators. Sec-
tion 3 proposes plug-inmethods of choosing the smoothing parameter b forMBC estimators using the G andMGkernels, and
conductsMonte Carlo simulations to check finite sample properties of the estimators. Section 4 applies twoMBC techniques

3 It is an open question whether the asymmetric kernels studied here may fit with nonparametric analysis of functional or infinite-dimensional data by
Ferraty and Vieu (2006). While they consider the asymmetric kernels that take the form of K ((X − x) /b) for a data point X , design point x, and smoothing
parameter b, none of the kernels in Table 1 can be expressed in this form.
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to real data to illustrate how theywork. Section 5 summarizes themain results of the paper and briefly mentions extensions
of MBC to joint density estimation. Outline proofs and formulae of plug-in smoothing parameters are given in the Appendix.

This paper adopts the following notational conventions. Γ (α) =


∞

0 yα−1 exp (−y) dy (α > 0) denotes the gamma

function. The expression ‘X d
= Y ’ reads ‘‘A random variable X obeys the distribution Y ’’. Lastly, the expression ‘Xn ∼ Yn’ is

used whenever Xn/Yn → 1 as n → ∞.

2. Main results

2.1. Asymptotic properties of MBC estimators

To develop convergence properties of MBC estimators, we make the following assumptions:

Assumption 1. f has four continuous and bounded derivatives, and f (x) > 0 for a given design point x > 0.

Assumption 2. The smoothing parameter b = bn (> 0) satisfies b → 0 and nbrj+5/2
→ ∞ as n → ∞, where

rj =

1/2 for j = G,MG, RIG
1 for j = LN, BS
3/2 for j = IG.

The smoothness condition on f in Assumption 1 is standard for consistency of density estimators using fourth-order
kernels, whereas the positivity of f (x) is required forMBC. Assumption 2 implies that the convergence rate of the smoothing
parameter b is slower than O


n−1/(rj+5/2)


. We require this condition to control the order of magnitude in remainder terms

when approximating the bias of each MBC estimator. It will be shown shortly that the MSE-optimal smoothing parameter
for each estimator becomes b∗

= O

n−2/9


for interior x and bĎ = O


n−1/(rj+9/2)


for boundary x; these convergence rates

are indeed within the required range.
Delivering bias and variance approximations for MBC estimators (2) and (3) requires (i) a second-order expansion of the

bias term and (ii) an approximation to the leading variance of the BU estimator (1). For (i), Assumptions 1 and 2 imply that
E


f̂j,b (x)


= f (x) + a1,j (x, f ) b + a2,j (x, f ) b2 + o


b2


, where a1,j (x, f ) and a2,j (x, f ) are kernel-specific functions that

depend on the design point x and derivatives of f . Using properties of the random variable corresponding to each kernel, we
can specify explicit forms of a1,j (x, f ) and a2,j (x, f ) as in Table 2. Furthermore, for (ii), the variance approximation is given

by Var

f̂j,b (x)


∼


nb1/2

−1 
2
√

πxrj
−1 f (x) :=


nb1/2

−1
vj (x) f (x) for interior x and Var


f̂j,b (x)


= O


nbrj+1/2

−1


for boundary x.
Below we present two theorems on the approximations to bias and variance terms of two MBC estimators.

Theorem 1. If Assumptions 1 and 2 hold, then for a1,j (x, f ) and a2,j (x, f ), the bias of the TS-MBC estimator using kernel j can
be approximated by

Bias

f̃TS,j (x)


∼

1
c (1 − c)


1
2


a21,j (x, f )

f (x)


− a2,j (x, f )


b2 :=

1
c (1 − c)

pj (x) b2.

For vj (x) and rj, the variance of the TS-MBC estimator can be approximated by

Var

f̃TS,j (x)


=

n−1b−1/2λ (c) vj (x) f (x) + o


nb1/2
−1


for interior x

O


nbrj+1/2−1


for boundary x,

where

λ (c) =


1 + c5/2


(1 + c)1/2 − 2

√
2c3/2

(1 + c)1/2 (1 − c)2
.

Theorem 2. If Assumptions 1 and 2 hold, then the bias of the JLN-MBC estimator using kernel j can be approximated by

Bias

f̃JLN,j (x)


∼ −f (x) a1,j (x, h) b2 := qj (x) b2,

where a1,j (x, h) is obtained by replacing f = f (x) in a1,j (x, f ) with

h = hj (x, f ) :=
a1,j (x, f )

f (x)
.
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Table 2
Explicit forms of a1,j (x, f ) and a2,j (x, f ).

Kernel (j) a1,j (x, f ) a2,j (x, f )

G f ′ (x) +
x
2 f

′′ (x). f ′′ (x) +
5
6 xf

′′′ (x) +
x2
8 f ′′′′ (x).

MG


x
2
f ′′ (x) for x ≥ 2b

ξb (x) f ′ (x) for x ∈ [0, 2b) ,


x
3
f ′′′ (x) +

x2

8
f ′′′′ (x) for x ≥ 2b

1
2


ξ 2
b (x) + ξb (x) +

x
b


f ′′ (x) for x ∈ [0, 2b) .

where ξb (x) = ρb (x) −
x
b = O (1).

IG x3
2 f ′′ (x). x5

2 f ′′′ (x) +
x6
8 f ′′′′ (x).

RIG x
2 f

′′ (x). 1
2 f

′′ (x) +
x
2 f

′′′ (x) +
x2
8 f ′′′′ (x).

LN x
2 f

′ (x) +
x2
2 f ′′ (x). x

8 f
′ (x) +

7
8 x

2f ′′ (x) +
3
4 x

3f ′′′ (x) +
x4
8 f ′′′′ (x).

BS x
2 f

′ (x) +
x2
2 f ′′ (x). 3

4 x
2f ′′ (x) +

3
4 x

3f ′′′ (x) +
x4
8 f ′′′′ (x).

For vj (x) and rj, the variance of the JLN-MBC estimator can be approximated by

Var

f̃JLN,j (x)


=

n−1b−1/2vj (x) f (x) + o


nb1/2
−1


for interior x

O


nbrj+1/2−1


for boundary x.

2.2. Discussions

2.2.1. Local property

Leading bias and variance terms. Because the support of asymmetric kernels matches that of the true density f , both TS- and
JLN-MBC estimators are free of boundary bias. More importantly, these estimators reduce the order of magnitude in bias
from O (b) to O


b2


, while their variances are O


nb1/2

−1

for interior x and O


nbrj+1/2

−1

for boundary x. Observe

that orders of variances remain unchanged from those for the corresponding BU estimator (1). We can also compare pj (x)
and qj (x) in leading bias terms with the corresponding ones for nonnegative symmetric kernels. As stated in Jones and
Signorini (1997, Sections 3.2–3.3), when the symmetric kernels are employed, the term corresponding to pj (x) for TS-MBC
is a linear combination of f ′′′′ (x) and


f ′′ (x)

2
/f (x), and the term corresponding to qj (x) for JLN-MBC is proportional to

f (x)

f ′′ (x) /f (x)

′′. The reason why pj (x) and qj (x) take more complicated forms is that while odd-order moments of
symmetric kernels are exactly zero, those of asymmetric kernels around the design point x are often O (b) or O


b2


. As a

result, extra density derivatives are included in pj (x) and qj (x).
The variance of JLN-MBC estimators is first-order asymptotically equivalent to that of the corresponding BU estimator

(1) for interior x. While the semi-parametric MBC density estimator by Hagmann and Scaillet (2007) also yields the same
leading variance term, this technique does not reduce the bias in order of magnitude. In contrast, when JLN-MBC is applied
for the density estimation using nonnegative symmetric kernels, the leading variance term tends to be larger (although not
inflated in order of magnitude) because the multiplier in the variance term involves the roughness (or squared integral) of
the ‘twiced’ kernel (Stuetzle and Mittal, 1979). Besides, since the multiplier λ (c) in the variance for TS-MBC estimators is
increasing in c ∈ (0, 1), ranging from 1 to 27/16, the variance of these estimators tends to be larger than that of the BU
estimator (1) for interior x. Lastly (but not least importantly), asymptotic variances of both TS- and JLN-MBC estimators for
interior x are proportional to x−rj , even afterMBC ismade. The property of ‘shrinking variance’ with the position of x is equiv-
alent to the strategy of using longer bandwidths over the tail region where the data are sparse. Therefore, MBC estimators
share the appealing variance property with the corresponding BU estimator.

Mean squared error (‘‘MSE’’). For interior x, the MSEs of f̃TS,j (x) and f̃JLN,j (x) can be approximated by

MSE

f̃TS,j (x)


=

p2j (x)

c2 (1 − c)2
b4 + n−1b−1/2λ (c) vj (x) f (x) + o


b4 + n−1b−1/2 , and

MSE

f̃JLN,j (x)


= q2j (x) b4 + n−1b−1/2vj (x) f (x) + o


b4 + n−1b−1/2 .

The MSE-optimal smoothing parameters are

b∗

TS,j =

c2 (1 − c)2 λ (c)

2/9


vj (x) f (x)
8p2j (x)

2/9

n−2/9, and
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b∗

JLN,j =


vj (x) f (x)
8q2j (x)

2/9

n−2/9,

which yield the optimal MSEs

MSE∗


f̃TS,j (x)


∼

9
88/9

γ (c) p2/9j (x)

vj (x) f (x)

8/9 n−8/9, and

MSE∗


f̃JLN,j (x)


∼

9
88/9

q2/9j (x)

vj (x) f (x)

8/9 n−8/9,

where

γ (c) =


1 + c5/2


(1 + c)1/2 − 2

√
2c3/2

c1/4 (1 + c)1/2 (1 − c)9/4

8/9

.

Observe that the MSE-optimal smoothing parameters are O

n−2/9


= O


h∗2


, where h∗ is the MSE-optimal bandwidth for

fourth-order kernel estimators, or TS- or JLN-MBC estimators using nonnegative symmetric kernels. As a result, the optimal
MSEs of f̃TS,j (x) and f̃JLN,j (x) for interior x become O


n−8/9


, as with MBC estimation using the second-order kernels. The

convergence rate is faster than O

n−4/5


, the optimal convergence rate in theMSE of the corresponding BU estimator (1) for

interior x. On the other hand, for boundary x, the MSEs of f̃TS,j (x) and f̃JLN,j (x) are O

b4 + n−1b−(rj+1/2)


, which yields the

MSE-optimal smoothing parameter bĎ = O

n−1/(rj+9/2)


and the optimalMSE ofO


n−4/(rj+9/2)


. The optimal convergence

rate of MSEs is indeed faster than O

n−2/(rj+5/2)


, that of the BU estimator for boundary x.

2.2.2. Global property
The undesirable convergence rates over boundary regions do not affect the global properties of the MBC estimators. By

the trimming argument in Chen (2000), the MISEs of the MBC estimators are

MISE

f̃TS,j (x)


=

b4

c2 (1 − c)2


∞

0
p2j (x) dx +

λ (c)
nb1/2


∞

0
vj (x) f (x) dx + o


b4 + n−1b−1/2 , and

MISE

f̃JLN,j (x)


= b4


∞

0
q2j (x) dx +

1
nb1/2


∞

0
vj (x) f (x) dx + o


b4 + n−1b−1/2 ,

provided that p2j (x) , q2j (x), and vj (x) are integrable.4 The MISE-optimal smoothing parameters are then given by

b∗∗

TS,j =

c2 (1 − c)2 λ (c)

2/9


∞

0 vj (x) f (x) dx

8


∞

0 p2j (x) dx

2/9

n−2/9, and

b∗∗

JLN,j =


∞

0 vj (x) f (x) dx

8


∞

0 q2j (x) dx

2/9

n−2/9.

Therefore, the optimal MISEs become

MISE∗∗


f̃TS,j (x)


∼

9
88/9

γ (c)


∞

0
p2j (x) dx

2/9 
∞

0
vj (x) f (x) dx

8/9

n−8/9, and

MISE∗∗


f̃JLN,j (x)


∼

9
88/9


∞

0
q2j (x) dx

2/9 
∞

0
vj (x) f (x) dx

8/9

n−8/9.

Furthermore, the multiplier γ (c) in the optimal MISE for the TS-MBC estimator is minimized at c∗
≈ 0.2636; this value is

exclusively considered in subsequent analyses.

3. Finite sample performance

3.1. Monte Carlo setup

We evaluate the finite sample performance of two classes of MBC estimators via Monte Carlo simulations. From now
on we concentrate on the G and MG kernels due to their popularity in the literature. This simulation study compares the
following three classes of estimators: (i) BU estimators (1) [BU-G, BU-MG]; (ii) TS-MBC estimators (2) [TS-G, TS-MG]; and
(iii) JLN-MBC estimators (3) [JLN-G, JLN-MG]. The value of the constant c in each TS-MBC estimator is set equal to the

4 Whenever the integrated squared bias is considered, pMG (x) and qMG (x) refer to those for interior x (i.e. x ≥ 2b).
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Table 3
True distributions considered in Monte Carlo simulations.

Distribution Density function f (x) , x ≥ 0

1. Gamma xα−1 exp (−x/β) / {βαΓ (α)} , (α, β) = (1.5, 1).

2. Weibull (α/β) (x/β)α−1 exp {− (x/β)α} , (α, β) = (1.5, 1.5).

3. Half-Normal 2
√
2πσ

exp

−

(x−µ)2

2σ 2


, (µ, σ ) = (0, 1.5).

4. Half-Logistic
 2

s


exp


−

 x−µ

s


/

1 + exp


−

 x−µ

s

2
, (µ, s) = (0, 1).

5. Log-Normal 1
x
√
2πσ

exp

−

(log x−µ)2

2σ 2


, (µ, σ ) = (0, 0.75).

6. Pareto ρλρ/ (x + λ)ρ+1 , (λ, ρ) = (1, 2).

7. Burr αβxα−1/ (1 + xα)β+1 , (α, β) = (1.5, 2.5).

8. Generalized Gamma γ xα−1 exp {− (x/β)γ } /{βαΓ (α/γ )}, (α, β, γ ) = (5, 2, 2.5).

9. Log-Normal and p


1
x
√
2πσ

exp

−

(log x−µ)2

2σ 2


+ (1 − p)


ρλρ

(x+λ)ρ+1


,

Pareto Mixture 1 (p, µ, σ , λ, ρ) = (0.7, 0, 0.5, 1, 2).

10. Log-Normal and p


1
x
√
2πσ

exp

−

(log x−µ)2

2σ 2


+ (1 − p)


ρλρ

(x+λ)ρ+1


,

Pareto Mixture 2 (p, µ, σ , λ, ρ) = (0.3, 0, 0.5, 1, 2).

MISE-optimal c∗
= 0.2636. Ten true distributions are considered, as listed in Table 3. All these distributions are popularly

chosen as models of, for example, the income distribution, the distribution of insurance claims and the baseline hazard.
For each distribution, 1000 data sets of sample size n = 100, 200 or 500 are simulated. All density estimates are evaluated

on an equally spaced grid of 500 points over the interval [0, 5]. As performance measures for each estimator f̄ , we compute

the root integrated squared error (‘‘RISE’’)RISE

f̄ (x)


=


∞

0


f̄ (x) − f (x)

2
dx

1/2
and the integrated absolute bias (‘‘IAB’’)

IAB

f̄ (x)


=


∞

0

E 
f̄ (x)


− f (x)

 dx. In our reports, the integrals are approximated over the 500 points, and the expected
value is replaced by the simulation average.

3.2. Choices of smoothing parameters

Choosing the smoothing parameter b is an important practical issue. To expedite computations, as in Hirukawa (2010),
we develop plug-inmethods for TS- and JLN-MBC estimators that use gamma density as a reference.5 The plug-in smoothing
parameters for f̃TS,MG (x) and f̃JLN,G (x) (called ‘‘gamma-referenced smoothing parameters’’ hereafter) are defined as the
minimizers of asymptotic weighted mean integrated squared errors (‘‘AWMISEs’’)

b̂GR–TS = argmin
b

AWMISE

f̃TS,MG (x)


= argmin

b


b4

c2 (1 − c)2


∞

0
p̃2MG (x) wTS (x) dx +

λ (c)
2
√

πnb1/2


∞

0

g (x)
√
x

wTS (x) dx


, and

b̂GR–JLN = argmin
b

AWMISE

f̃JLN,G (x)


= argmin

b


b4


∞

0
q̃2G (x) wJLN (x) dx +

1
2
√

πnb1/2


∞

0

g (x)
√
x

wJLN (x) dx


,

where g (x) = xα−1 exp (−x/β) / {βαΓ (α)} is the density function for the gamma distribution with parameters (α, β), and
p̃MG (x) and q̃G (x) can be obtained by replacing f (x) in pMG (x) and qG (x) with g (x). The weighting functions are chosen as
wTS (x) = x5 andwJLN (x) = x to ensure finiteness of integrals. The parameters (α, β) are replaced by their estimates


α̂, β̂


via method of moments or maximum likelihood, where the latter is exclusively used throughout. Analytical expressions of
b̂GR–TS and b̂GR–JLN , as well as b̂GR–BU (= the gamma-referenced smoothing parameter for f̂MG (x)), are given in the Appendix.

We do not pursue the gamma-referenced smoothing parameter for f̃TS,G (x); since extra terms are involved in pG (x), the
minimizer of its AWMISE takes a much more complicated form than b̂GR–TS . Moreover, although it is possible to derive the

5 Alternatively, b could be chosen via a version of cross-validation methods. However, this appears to be a hard problem; indeed, even for nonnegative
symmetric kernels, Jones and Signorini (1997) defer automatic bandwidth selection in this direction to future work.
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Table 4
Simulation results.

Panel (a): n = 100

Estimator Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5
ROT GR ROT GR ROT GR ROT GR ROT GR

BU-G RISE: Ave 0.0389 0.0382 0.0397 0.0398 0.0350 0.0371 0.0330 0.0345 0.0710 0.0534
SD (0.0120) (0.0123) (0.0139) (0.0138) (0.0122) (0.0130) (0.0115) (0.0122) (0.0140) (0.0153)

IAB 0.0175 0.0125 0.0183 0.0127 0.0135 0.0108 0.0137 0.0105 0.0328 0.0198
BU-MG RISE: Ave 0.0386 0.0386 0.0389 0.0396 0.0369 0.0397 0.0336 0.0364 0.0658 0.0469

SD (0.0113) (0.0119) (0.0126) (0.0131) (0.0144) (0.0149) (0.0134) (0.0140) (0.0158) (0.0165)
IAB 0.0180 0.0126 0.0185 0.0125 0.0098 0.0077 0.0102 0.0076 0.0383 0.0211

TS-G RISE: Ave 0.0415 0.0394 0.0434 0.0414 0.0289 0.0381 0.0264 0.0345 0.0890 0.0509
SD (0.0110) (0.0132) (0.0145) (0.0150) (0.0131) (0.0155) (0.0119) (0.0143) (0.0118) (0.0156)

IAB 0.0166 0.0062 0.0197 0.0056 0.0110 0.0044 0.0100 0.0037 0.0388 0.0119
TS-MG RISE: Ave 0.0445 0.0408 0.0436 0.0421 0.0370 0.0431 0.0362 0.0393 0.0926 0.0450

SD (0.0084) (0.0127) (0.0110) (0.0144) (0.0151) (0.0177) (0.0133) (0.0168) (0.0114) (0.0158)
IAB 0.0235 0.0074 0.0223 0.0067 0.0170 0.0058 0.0202 0.0058 0.0563 0.0134

JLN-G RISE: Ave 0.0388 0.0365 0.0386 0.0365 0.0318 0.0327 0.0282 0.0302 0.0777 0.0566
SD (0.0126) (0.0130) (0.0154) (0.0149) (0.0138) (0.0143) (0.0127) (0.0135) (0.0147) (0.0140)

IAB 0.0156 0.0104 0.0179 0.0129 0.0117 0.0099 0.0103 0.0075 0.0329 0.0210
JLN-MG RISE: Ave 0.0388 0.0384 0.0394 0.0385 0.0307 0.0325 0.0267 0.0303 0.0849 0.0636

SD (0.0090) (0.0104) (0.0109) (0.0120) (0.0141) (0.0148) (0.0129) (0.0139) (0.0129) (0.0133)
IAB 0.0117 0.0077 0.0117 0.0085 0.0047 0.0042 0.0032 0.0023 0.0406 0.0253

Estimator Distribution 6 Distribution 7 Distribution 8 Distribution 9 Distribution 10
ROT GR ROT GR ROT GR ROT GR ROT GR

BU-G RISE: Ave 0.1287 0.0947 0.0690 0.0623 0.0525 0.0385 0.0663 0.0549 0.0756 0.0603
SD (0.0449) (0.0321) (0.0201) (0.0206) (0.0139) (0.0136) (0.0233) (0.0168) (0.0303) (0.0191)

IAB 0.0411 0.0277 0.0230 0.0152 0.0405 0.0159 0.0338 0.0237 0.0328 0.0217
BU-MG RISE: Ave 0.1176 0.0836 0.0667 0.0616 0.0497 0.0379 0.0655 0.0560 0.0698 0.0581

SD (0.0448) (0.0272) (0.0188) (0.0201) (0.0139) (0.0133) (0.0234) (0.0179) (0.0275) (0.0172)
IAB 0.0552 0.0354 0.0269 0.0174 0.0374 0.0147 0.0393 0.0267 0.0320 0.0224

TS-G RISE: Ave 0.1346 0.0797 0.0753 0.0626 0.0640 0.0405 0.0763 0.0529 0.0720 0.0516
SD (0.0498) (0.0356) (0.0173) (0.0224) (0.0124) (0.0143) (0.0231) (0.0171) (0.0337) (0.0190)

IAB 0.0433 0.0213 0.0241 0.0087 0.0539 0.0059 0.0416 0.0178 0.0322 0.0154
TS-MG RISE: Ave 0.1764 0.1171 0.0841 0.0636 0.0572 0.0407 0.0795 0.0558 0.1000 0.0711

SD (0.0418) (0.0307) (0.0157) (0.0211) (0.0122) (0.0142) (0.0272) (0.0199) (0.0319) (0.0221)
IAB 0.0967 0.0510 0.0365 0.0108 0.0461 0.0052 0.0535 0.0211 0.0603 0.0266

JLN-G RISE: Ave 0.1185 0.0762 0.0713 0.0676 0.0596 0.0366 0.0755 0.0619 0.0666 0.0506
SD (0.0535) (0.0260) (0.0215) (0.0210) (0.0108) (0.0117) (0.0279) (0.0160) (0.0345) (0.0131)

IAB 0.0375 0.0219 0.0211 0.0191 0.0408 0.0186 0.0359 0.0276 0.0262 0.0173
JLN-MG RISE: Ave 0.1512 0.1043 0.0688 0.0663 0.0510 0.0338 0.0700 0.0595 0.0789 0.0624

SD (0.0523) (0.0235) (0.0159) (0.0148) (0.0096) (0.0106) (0.0271) (0.0173) (0.0350) (0.0117)
IAB 0.0538 0.0331 0.0204 0.0179 0.0338 0.0163 0.0361 0.0269 0.0252 0.0204

(continued on next page)

gamma-referenced smoothing parameter for f̃JLN,MG (x) in a similar way,6 our preliminary simulation results indicate that
the formula frequently generates large values and thuswe do not advocate its use. From the viewpoint of practical relevance,
b̂GR–TS and b̂GR–JLN are simply employed for f̃TS,G (x) and f̃JLN,MG (x) in our simulations, respectively. Similarly, b̂GR–BU is chosen
as the smoothing parameter for f̂G (x).

Besides, a very simple formula is frequently applied in the literature (e.g. Gustafsson et al., 2009). In this respect,
a ‘‘rule-of-thumb’’ smoothing parameter is also considered for each estimator. More precisely, we additionally employ
b̂ROT–BU = σ̂xn−2/5 for BU-G, BU-MG and b̂ROT–MBC = σ̂xn−2/9 for four MBC estimators, where σ̂x is the sample standard
deviation of observations.

3.3. Simulation results

Table 4 presents Monte Carlo results. For each distribution, results are qualitatively similar across three sample sizes,
and values of performance measures decrease with the sample size. As regards smoothing parameters, except average
RISEs for Distributions 3 and 4, the gamma-referenced method in general works better than the rule-of-thumb method,

6 Choosing x5 as the weighting function, we can derive the smoothing parameter as

argmin
b


b4


∞

0
q̃2MG (x) x5dx +

1
2
√

πnb1/2


∞

0

g (x)
√
x

x5dx


=


4αβ9/2Γ (α + 9/2) Γ (α)

4
√

π (α − 1)2 (α − 2)2 Γ (2α)

2/9

n−2/9.



M. Hirukawa, M. Sakudo / Computational Statistics and Data Analysis 75 (2014) 112–123 119

Table 4 (continued)

Panel (b): n = 200

Estimator Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5
ROT GR ROT GR ROT GR ROT GR ROT GR

BU-G RISE: Ave 0.0319 0.0306 0.0319 0.0314 0.0278 0.0291 0.0261 0.0271 0.0592 0.0424
SD (0.0094) (0.0097) (0.0103) (0.0100) (0.0092) (0.0096) (0.0087) (0.0091) (0.0109) (0.0112)

IAB 0.0140 0.0099 0.0146 0.0101 0.0105 0.0084 0.0106 0.0082 0.0272 0.0159
BU-MG RISE: Ave 0.0309 0.0303 0.0302 0.0305 0.0288 0.0309 0.0263 0.0283 0.0523 0.0362

SD (0.0086) (0.0091) (0.0093) (0.0093) (0.0106) (0.0108) (0.0100) (0.0103) (0.0123) (0.0121)
IAB 0.0141 0.0098 0.0144 0.0097 0.0076 0.0060 0.0079 0.0059 0.0306 0.0164

TS-G RISE: Ave 0.0366 0.0309 0.0372 0.0313 0.0225 0.0285 0.0205 0.0258 0.0820 0.0403
SD (0.0087) (0.0102) (0.0109) (0.0104) (0.0100) (0.0111) (0.0092) (0.0104) (0.0094) (0.0110)

IAB 0.0144 0.0052 0.0171 0.0048 0.0093 0.0035 0.0084 0.0031 0.0351 0.0102
TS-MG RISE: Ave 0.0375 0.0317 0.0357 0.0314 0.0284 0.0319 0.0280 0.0292 0.0837 0.0339

SD (0.0057) (0.0093) (0.0078) (0.0098) (0.0113) (0.0126) (0.0101) (0.0121) (0.0090) (0.0111)
IAB 0.0194 0.0062 0.0189 0.0055 0.0134 0.0044 0.0161 0.0043 0.0500 0.0106

JLN-G RISE: Ave 0.0328 0.0295 0.0312 0.0286 0.0244 0.0249 0.0217 0.0229 0.0686 0.0468
SD (0.0097) (0.0100) (0.0111) (0.0105) (0.0104) (0.0106) (0.0097) (0.0101) (0.0114) (0.0102)

IAB 0.0129 0.0084 0.0145 0.0102 0.0092 0.0078 0.0080 0.0057 0.0284 0.0172
JLN-MG RISE: Ave 0.0332 0.0315 0.0319 0.0302 0.0234 0.0246 0.0205 0.0230 0.0766 0.0534

SD (0.0064) (0.0075) (0.0073) (0.0081) (0.0105) (0.0108) (0.0097) (0.0103) (0.0101) (0.0100)
IAB 0.0099 0.0065 0.0096 0.0069 0.0038 0.0033 0.0026 0.0019 0.0361 0.0214

Estimator Distribution 6 Distribution 7 Distribution 8 Distribution 9 Distribution 10
ROT GR ROT GR ROT GR ROT GR ROT GR

BU-G RISE: Ave 0.1155 0.0780 0.0572 0.0498 0.0425 0.0301 0.0571 0.0445 0.0668 0.0492
SD (0.0391) (0.0236) (0.0156) (0.0156) (0.0104) (0.0098) (0.0184) (0.0124) (0.0250) (0.0139)

IAB 0.0366 0.0227 0.0189 0.0122 0.0325 0.0125 0.0298 0.0196 0.0291 0.0175
BU-MG RISE: Ave 0.1018 0.0649 0.0539 0.0478 0.0403 0.0297 0.0551 0.0442 0.0598 0.0458

SD (0.0401) (0.0194) (0.0143) (0.0148) (0.0105) (0.0097) (0.0181) (0.0135) (0.0221) (0.0128)
IAB 0.0482 0.0279 0.0217 0.0136 0.0302 0.0117 0.0338 0.0213 0.0287 0.0181

TS-G RISE: Ave 0.1298 0.0677 0.0681 0.0495 0.0558 0.0301 0.0712 0.0426 0.0677 0.0422
SD (0.0445) (0.0275) (0.0133) (0.0163) (0.0091) (0.0101) (0.0191) (0.0127) (0.0297) (0.0133)

IAB 0.0417 0.0184 0.0215 0.0074 0.0472 0.0048 0.0396 0.0158 0.0311 0.0139
TS-MG RISE: Ave 0.1706 0.1041 0.0725 0.0489 0.0502 0.0303 0.0728 0.0432 0.0951 0.0605

SD (0.0395) (0.0237) (0.0110) (0.0147) (0.0091) (0.0100) (0.0235) (0.0144) (0.0295) (0.0156)
IAB 0.0942 0.0451 0.0310 0.0089 0.0409 0.0044 0.0501 0.0175 0.0597 0.0233

JLN-G RISE: Ave 0.1121 0.0638 0.0622 0.0580 0.0505 0.0289 0.0694 0.0533 0.0609 0.0427
SD (0.0484) (0.0197) (0.0166) (0.0161) (0.0079) (0.0085) (0.0238) (0.0116) (0.0308) (0.0096)

IAB 0.0351 0.0180 0.0180 0.0158 0.0343 0.0150 0.0341 0.0243 0.0251 0.0155
JLN-MG RISE: Ave 0.1453 0.0905 0.0601 0.0574 0.0428 0.0265 0.0632 0.0502 0.0743 0.0552

SD (0.0481) (0.0178) (0.0110) (0.0103) (0.0068) (0.0073) (0.0220) (0.0130) (0.0313) (0.0079)
IAB 0.0520 0.0280 0.0176 0.0154 0.0283 0.0131 0.0338 0.0233 0.0248 0.0194

(continued on next page)

and improvement in performance measures by the former is often substantial. In particular, a smaller IAB by the gamma-
referencedmethod can be attributed to the fact that on average it yields a smaller smoothing parameter value (although the
results are unreported). Therefore, wemay safely concentrate on the results from the gamma-referencedmethod hereafter.

Table 4 reveals that overall MBC works. For each combination of sample size and distribution, MBC estimators at least
tend to deliver smaller IABs than two BU ones. The results suggest that there is no uniformly superiorMBC estimator; rather,
which MBC estimator performs best depends on distributions.

It is hard to judge whether for a given MBC estimator, the MG kernel improves performance measures over the G kernel,
whereas it appears to be advantageous to employ the formerwhennoMBC ismade. In particular, TS-MGoften performsmost
poorly among all six estimators. Its inferior performance can be attributed to the following two respects. First, TS-MBC esti-
mation relies on two smoothing parameters b and b/c. Controlling both b and b/c is a cumbersome task. Because 0 < c < 1,
the density estimator using b/c tends to be oversmoothed, which is potentially a source of a large bias in every TS-MBC es-
timator. On the other hand, if we make b too short in order to have a reasonable length of b/c , additional variability is intro-
duced to the other estimator using b due to undersmoothing. Second,when theMGkernel is employed, these two smoothing
parameters also play a role of determining the boundary region explicitly (e.g. [0, 2b) for the density estimator using b). Un-
less b is short enough, there is a relatively small interior region for the density estimator using b/c. This aspect is also thought
to worsen the performancemeasures of TS-MG, in particular for small tomedium sample sizes. In conclusion, when TS-MBC
estimation is applied, it is desirable to use the smoothing parameter choice method that tends to provide a small value con-
sistently. Our experiment indicates that for a given distribution and a given sample size, b̂GR–TS on average yields a smaller
value than b̂ROT–MBC does, which explains why the former is preferable in general for TS-MBC estimation over the latter.
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Table 4 (continued)

Panel (c): n = 500

Estimator Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5
ROT GR ROT GR ROT GR ROT GR ROT GR

BU-G RISE: Ave 0.0247 0.0231 0.0238 0.0229 0.0202 0.0212 0.0190 0.0197 0.0457 0.0313
SD (0.0066) (0.0066) (0.0072) (0.0068) (0.0060) (0.0062) (0.0058) (0.0060) (0.0079) (0.0080)

IAB 0.0103 0.0073 0.0108 0.0075 0.0075 0.0060 0.0076 0.0058 0.0208 0.0119
BU-MG RISE: Ave 0.0230 0.0219 0.0215 0.0216 0.0209 0.0223 0.0191 0.0205 0.0380 0.0263

SD (0.0058) (0.0060) (0.0061) (0.0061) (0.0069) (0.0070) (0.0066) (0.0067) (0.0091) (0.0087)
IAB 0.0103 0.0071 0.0100 0.0066 0.0056 0.0044 0.0058 0.0044 0.0222 0.0119

TS-G RISE: Ave 0.0316 0.0230 0.0307 0.0219 0.0160 0.0195 0.0146 0.0177 0.0731 0.0304
SD (0.0065) (0.0070) (0.0077) (0.0069) (0.0065) (0.0069) (0.0062) (0.0065) (0.0070) (0.0078)

IAB 0.0119 0.0043 0.0142 0.0041 0.0072 0.0024 0.0066 0.0022 0.0305 0.0084
TS-MG RISE: Ave 0.0307 0.0231 0.0278 0.0218 0.0201 0.0218 0.0199 0.0200 0.0727 0.0234

SD (0.0036) (0.0059) (0.0052) (0.0062) (0.0071) (0.0079) (0.0065) (0.0076) (0.0070) (0.0079)
IAB 0.0152 0.0049 0.0150 0.0039 0.0097 0.0031 0.0116 0.0031 0.0422 0.0076

JLN-G RISE: Ave 0.0266 0.0228 0.0239 0.0210 0.0171 0.0173 0.0152 0.0159 0.0576 0.0366
SD (0.0071) (0.0069) (0.0077) (0.0072) (0.0065) (0.0066) (0.0063) (0.0063) (0.0080) (0.0070)

IAB 0.0098 0.0063 0.0111 0.0077 0.0066 0.0054 0.0056 0.0038 0.0232 0.0133
JLN-MG RISE: Ave 0.0276 0.0247 0.0244 0.0223 0.0164 0.0172 0.0144 0.0161 0.0658 0.0421

SD (0.0040) (0.0047) (0.0045) (0.0050) (0.0067) (0.0069) (0.0063) (0.0066) (0.0078) (0.0075)
IAB 0.0080 0.0053 0.0074 0.0052 0.0028 0.0024 0.0020 0.0014 0.0303 0.0168

Estimator Distribution 6 Distribution 7 Distribution 8 Distribution 9 Distribution 10
ROT GR ROT GR ROT GR ROT GR ROT GR

BU-G RISE: Ave 0.0983 0.0587 0.0443 0.0369 0.0313 0.0217 0.0461 0.0330 0.0540 0.0370
SD (0.0326) (0.0154) (0.0111) (0.0110) (0.0072) (0.0065) (0.0141) (0.0090) (0.0188) (0.0097)

IAB 0.0308 0.0170 0.0143 0.0090 0.0237 0.0088 0.0243 0.0145 0.0228 0.0126
BU-MG RISE: Ave 0.0824 0.0452 0.0394 0.0336 0.0297 0.0214 0.0439 0.0323 0.0472 0.0332

SD (0.0335) (0.0115) (0.0101) (0.0099) (0.0072) (0.0065) (0.0137) (0.0091) (0.0162) (0.0089)
IAB 0.0393 0.0196 0.0157 0.0093 0.0220 0.0082 0.0272 0.0155 0.0232 0.0133

TS-G RISE: Ave 0.1228 0.0544 0.0607 0.0370 0.0459 0.0207 0.0651 0.0324 0.0598 0.0336
SD (0.0394) (0.0183) (0.0097) (0.0116) (0.0063) (0.0066) (0.0155) (0.0088) (0.0239) (0.0090)

IAB 0.0391 0.0147 0.0183 0.0060 0.0389 0.0033 0.0365 0.0127 0.0269 0.0117
TS-MG RISE: Ave 0.1629 0.0889 0.0599 0.0352 0.0414 0.0208 0.0654 0.0313 0.0868 0.0499

SD (0.0368) (0.0164) (0.0074) (0.0093) (0.0061) (0.0066) (0.0188) (0.0094) (0.0249) (0.0110)
IAB 0.0896 0.0372 0.0246 0.0067 0.0342 0.0030 0.0452 0.0136 0.0541 0.0196

JLN-G RISE: Ave 0.1040 0.0499 0.0526 0.0479 0.0400 0.0212 0.0619 0.0430 0.0524 0.0352
SD (0.0428) (0.0133) (0.0119) (0.0115) (0.0055) (0.0057) (0.0195) (0.0080) (0.0244) (0.0068)

IAB 0.0325 0.0138 0.0146 0.0125 0.0270 0.0113 0.0310 0.0198 0.0219 0.0133
JLN-MG RISE: Ave 0.1370 0.0740 0.0508 0.0475 0.0332 0.0190 0.0560 0.0403 0.0662 0.0474

SD (0.0438) (0.0115) (0.0073) (0.0068) (0.0044) (0.0049) (0.0170) (0.0085) (0.0249) (0.0053)
IAB 0.0486 0.0217 0.0142 0.0122 0.0219 0.0094 0.0304 0.0191 0.0227 0.0175

Note: ‘‘ROT’’ and ‘‘GR’’ in column headings denote ‘‘rule-of-thumb’’ and ‘‘gamma-referenced’’ smoothing parameter choice methods. ‘‘Ave’’ and ‘‘SD’’ are
simulation averages and standard deviations of RISEs.

Table 5
Summary statistics of real data.

Variable Mean SD Min Max Percentiles
25% 50% 75%

Per Capita Income (in USD) 3,790 4,156 224 25,646 744 2,005 5,817
Belgian Female Wage (in BEF) 414 154 88 1,364 314 384 483
US Male Wage (in USD) 958 404 115 3,078 668 905 1,160

4. Empirical illustrations

This section applies the MBC density estimators to real data sets. Our focus is on income and wage data. They have a
natural boundary at the origin, and their distributions are empirically characterized by concentration of observations near
the boundary and a long tail with sparse data. Hence, we are motivated to estimate the densities using asymmetric kernels.

The data we use include: (a) per capita income of 114 countries (in US dollars); (b) gross hourly wage rate for 579
Belgian females (in Belgian francs); and (c) monthly earnings of 935 US males (in US dollars). The first and third data are
originally used in Romer (1993) and Blackburn and Neumark (1992), and these data sets are now available under the names
‘‘openness’’ and ‘‘wage2’’ as supplementalmaterials forWooldridge (2013). The second is taken from the data set ‘‘bwage’’,
a supplemental material for Verbeek (2012). Table 5 reports summary statistics of the data.

The density of each data is estimated by BU-G, TS-G and JLN-G. The data are first converted to the scale-adjusted ones
by dividing them by either 103 or 104, and then the resulting density estimates are back-transformed to the ones in the
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Fig. 1. Density estimates from real data.

original scale.7 Plug-in smoothing parameters b̂GR–BU , b̂GR–TS and b̂GR–JLN are employed for BU-G, TS-G and JLN-G, respec-

tively. Their values (based on the scale-adjusted data) are:

b̂GR–BU , b̂GR–TS, b̂GR–JLN


= (0.0434, 0.0655, 0.1752) for (a);

(0.0041, 0.0054, 0.0395) for (b); and (0.0105, 0.0152, 0.0677) for (c). The plots of density estimates are presented in Fig. 1.
We can observe that while estimates from BU-G and TS-G largely look alike, the one from JLN-G is considerably different.
Hirukawa (2010) reports the tendency of JLN-MBC that when the BU estimator underestimates (overestimates) the density,
its corresponding JLN-MBCestimator corrects the estimate in anupward (downward) direction. Fig. 1 indicates that JLN-G in-
deed exhibits such smooth-out tendencies, and as a result it substantially smooths away the part that BU-G estimateswiggly.

5. Concluding remarks

This paper has demonstrated that twoMBC techniques studied inHirukawa (2010) for density estimationwith support on
[0, 1] can be extended to density estimationwith support on [0, ∞) using asymmetric kernels. Under sufficient smoothness
of the true density, both bias reduction methods are shown to improve the order of magnitude in bias from O (b) to O


b2


,

while the order of magnitude in variance remains unchanged. Two classes of MBC density estimators are by construction
nonnegative, and establish a faster convergence rate ofO


n−8/9


inMSE for the interior part when best implemented.Monte

Carlo simulations confirm bias reduction via two MBC methods.
While this paper deals exclusively with the univariate case, it appears to be possible to extend the analysis to joint den-

sity estimation. In the multivariate (‘‘MV’’) case, the MV-BU estimator of the density f with support on Rd
+
using a random

sample {Xi}
n
i=1 =


(X1i, . . . , Xdi)

⊤
n
i=1 is f̂j,b (x) = n−1 n

i=1 Kj(x,b) (Xi), where Kj(x,b) (u) :=
d

ℓ=1 Kj(xℓ,b) (uℓ) is the product
asymmetric kernel given a design point x = (x1, . . . , xd)⊤ and a smoothing parameter b1 = · · · = bd = b. If f has four con-
tinuous and bounded partial derivatives and b+ 1/


nbd(rj+1/2)+2


→ 0, then it can be shown that each of the MV-TS-MBC

estimator f̃TS,j (x) =


f̂j,b (x)

1/(1−c) 
f̂j,b/c (x)

−c/(1−c)
for some c ∈ (0, 1) and the MV-JLN-MBC estimator

f̃JLN,j (x) = f̂j,b (x)


1
n

n
i=1

Kj(x,b) (Xi)

f̂j,b (Xi)



admits the expansion f (x)+O

b2 + n−1/2 d

ℓ=1 b
−(1/2)(1/2+rj1ℓ)


, where 1ℓ := 1 (xℓ/b → κℓ > 0) is the indicator function

that takes 1 if xℓ lies in the boundary region. Analytical expressions of leading bias and variance terms and their finite sample
performance will be addressed in a separate paper.
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Appendix A. Sketches of the proofs

The proof of each theorem requires kernel-specific arguments, which include Taylor expansions and properties of the
random variable corresponding to the kernel. To save space, we provide only outline proofs when the Gamma kernel is
employed. Full-length proofs are available upon request.

Outline Proof of Theorem 1. For the bias, it follows from the proof of Theorem1 inHirukawa (2010) and Assumption 2 that

E

f̃TS,G (x)


= f (x) +

1
c (1 − c)


1
2


a21,G (x, f )

f (x)


− a2,G (x, f )


b2 + o


b2


.

For the variance, recognize that

Var

f̃TS,G (x)


=

1

(1 − c)2

Var


f̂G,b (x)


− 2cCov


f̂G,b (x) , f̂G,b/c (x)


+ c2Var


f̂G,b/c (x)


+ O


n−1 .

Then, approximate each term as in the proof of Theorem 1 in Hirukawa (2010). �

Outline Proof of Theorem 2. For the bias, write h (x) = a1,G (x, f ) /f (x). It follows from the procedures in Section A.2.1 of
Hirukawa (2010, pp. 490–491) that

E

f̃JLN,G (x)


= f (x) − f (x)


h′ (x) +

x
2
h′′ (x)


b2 + o


b2


= f (x) − f (x) a1,G (x, h) b2 + o


b2


.

For the variance, the procedures in Section A.2.2 of Hirukawa (2010, p. 492) imply that

f̃JLN,G (x) ∼ f (x)
1
n

n
i=1

KG(x/b+1,b) (Xi)

f (Xi)


2 −

f̂G,b (Xi)

f (Xi)


.

By Stirling’s approximation to the gamma function inside the integral and the trimming argument in Chen (2000), the leading
variance on the right-hand side can be approximated by n−1Ab (x) f (x), where

Ab (x) =
b−1Γ (2x/b + 1)

22x/b+1Γ 2 (x/b + 1)
∼


b−1/2

2
√

πx1/2
if x/b → ∞

Γ (2κ + 1) b−1

22κ+1Γ 2 (κ + 1)
if x/b → κ.

Then, the result immediately follows. �

Appendix B. Formulae for gamma-referenced smoothing parameters

The analytical expression of b̂GR–TS is

b̂GR–TS =

c2 (1 − c)2 λ (c)

2/9

4αβ9/2Γ (α + 9/2) Γ (α)

16
√

πCTS (α) Γ (2α)

2/9

n−2/9,

where

CTS (α) =
1
36

(α − 2)2


α −
3
2

2

(α − 1)2 −
1
6

(α − 2)


α −
3
2


(α − 1)2 α


α +

1
2


+

1
9

(α − 2)


α −
3
2


(α − 1) α


α +

1
2


(α + 1) +

1
4

(α − 1)2 α


α +

1
2


(α + 1)


α +

3
2


−

1
3

(α − 1) α


α +

1
2


(α + 1)


α +

3
2


(α + 2) +

1
9
α


α +

1
2


(α + 1)


α +

3
2


(α + 2)


α +

5
2


.

On the other hand, b̂GR–JLN takes a much simpler form. It is given by

b̂GR–JLN =


4αβ5/2Γ (α + 1/2) Γ (α)

4
√

πΓ (2α)

2/9

n−2/9.

Moreover, the gamma-referenced smoothing parameter for f̂MG (x) is defined as

b̂GR–BU = argmin
b

AWMISE

f̂MG (x)


= argmin

b


b2

4


∞

0
x2


g ′′ (x)

2
w (x) dx +

1
2
√

πnb1/2


∞

0

g (x)
√
x

w (x) dx


,
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where the weighting function w (x) is chosen as w (x) = x3 to ensure finiteness of integrals. It follows that b̂GR–BU can be
expressed as

b̂GR–BU =


4αβ5/2Γ (α + 5/2) Γ (α)

8
√

πCBU (α) Γ (2α)

2/5

n−2/5,

where

CBU (α) =
1
4

(α − 2)2 (α − 1)2 − (α − 2) (α − 1)2 α +
1
2

(α − 1) (3α − 4) α


α +

1
2


− (α − 1) α


α +

1
2


(α + 1) +

1
4
α


α +

1
2


(α + 1)


α +

3
2


. �
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