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Abstract— In recent years, not only ruggedness but also
neutrality has been recognized as an important feature of a
fitness landscape for genetic search. Following that the concept of
neutrality in artificial evolution originates from Kimura’s neutral
theory in natural evolution, it is expected that the dynamics
of artificial evolution in the landscapes including neutrality
would be described by using techniques in population genetics.
Furthermore, new theoretical guidelines might be developed
for effective genetic search. In a recent paper [25], we have
discussed the use of theNei’s standard genetic distance, which
originates from population genetics, for measuring neutrality
of fitness landscapes. In our results, several consistencies with
the population genetics have been found by applying the Nei’s
standard genetic distance to a tunably neutral NK landscape. In
this paper, computer simulations are systematically conducted
by using a standard genetic algorithm in order to clarify
the characteristics of the Nei’s standard genetic distance. The
terraced NK landscape is adopted as a test function.

I. I NTRODUCTION

Many EA researchers have been inspired by natural evo-
lution and trying to model the process of natural evolution
in order to develop powerful optimization methods [1][2][3].
Therefore, the dynamics in artificial evolution would be ex-
plained by the theory of natural evolution. But until recently,
few theories which are applicable to artificial evolution have
been found. Since the concept of neutrality was introduced
into the EA community, EA researchers have expected that the
dynamics of artificial evolution would be described by using
techniques in population genetics. This is because the concept
of neutrality in artificial evolution originates from Kimura’s
neutral theory in population genetics.

Therefore, neutrality has attracted much research interest
in recent years [4][5]. This feature, due to highly redundant
mappings from genotype to phenotype or from phenotype to
fitness, is also found in natural systems. From this point of
view, evolutionary theorists [6] and molecular biologists [7][8]
also have investigated it.

Neutrality has been found in many real-world applications
of artificial evolution, such as evolution of neural network
controllers in robotics [9][10][11][12], on-chip electronic cir-
cuit evolution [13][14][15]. Landscapes which include neutral-
ity have been conceptualized as containingneutral networks
[16][17][18]. Harvey first introduced the concept ofneutral

networks into the EA community [16]. He defined it as
follows: “A neutral network of a fitness landscape is defined
as a set of connected points of equivalent fitness, each repre-
senting a separate genotype: here connected means that there
exists a path of single (neutral) mutations which can traverse
the network between any two points on it without affecting
fitness.” For these years, several papers [19][20][17][18] have
been published for investigating the evolutionary dynamics.

Population geneticists have been trying to explain evo-
lutionary change quantitatively, that is, the change of gene
frequency in the population. Statistical methods for estimating
the number of gene differences and the divergence time
between related species have been developed. These methods
use electrophoretic data for investigating protein variation.
The results are compared with the divergence time derived
from the fossil records. However, population geneticists cannot
get complete information about the genetic material through
electrophoresis. In artificial evolution, EA researchers can get
all the genetic information of a population. Furthermore they
can define genetic operators. Therefore, the introduction of
such statistical methods for estimating the number of gene
substitutions would be helpful to understand the mechanism
of EAs for solving difficult optimization problems.

From a theoretical point of view, it would be beneficial to
investigate whether the number of substitutions estimated in
EAs can be understood by the theory of natural evolution.
According to Kimura’s neutral theory [6] and Ohta’s nearly
neutral theory [21][22], the following assertions have been
made [23]:

1) For each protein, the rate of evolution in terms of amino
acid substitutions is approximately constant per year per
site for various lines, as long as the function and tertiary
structure of the molecule remain essentially unaltered.

2) Functionally less important molecules or parts of a
molecule evolve (in terms of mutant substitutions) faster
than more important ones.

3) Those mutant substitutions that disrupt less the existing
structure and function of a molecule (conservative sub-
stitutions) occur more frequently in evolution than more
disruptive ones.

4) Gene duplication must always precede the emergence of



a gene having a new function.
5) Selective elimination of definitely deleterious mutants

and random fixation of selectively neutral or very
slightly deleterious mutants occur far more frequently in
evolution than positive Darwinian selection of definitely
advantageous mutants.

Recently, we have discussed the use of theNei’s standard
genetic distance[24], which is one of such statistical methods
for estimating the number of substitutions, for measuring
neutrality of fitness landscapes1 [25]. In our experiments,
several consistencies with population genetics have been found
by applying the Nei’s standard genetic distance to the results
of evolution on tunably neutral NK landscapes. These can be
summarized as follows:
Under small mutation rate per locus and fixed population size,

• The number of gene substitutions increases with the
increase of neutrality.

• The number of gene substitutions decreases with the
increase of ruggedness where the landscape includes
neutrality.

• The number of gene substitutions is largest when random
sampling is applied with mutation.

To clarify whether these results hold for different population
sizes and to discuss the consistencies with population genetics,
a systematic investigation should be done.

This paper investigates the characteristics of the Nei’s
standard genetic distance in fitness landscapes including neu-
trality in various conditions. The next section describes the
Nei’s standard genetic distance. Section III applies the Nei’s
genetic distance to one of tunably neutral landscapes called
the terraced NK landscape and shows the results. Section IV
discusses theerror thresholdon the population size and the
mutation rate based on the obtained results. Conclusions are
given in the last section.

II. T HE NEI’ S STANDARD GENETIC DISTANCE

Genetic distance is a term of population genetics used for
estimating gene differences per locus between populations.
Although there are several definitions for this, the Nei’s
standard genetic distance [24] is adopted in this paper.

The Nei’s standard genetic distance is defined as follows.
Consider two populations,X and Y . Let xik and yik be the
frequencies of thek-th alleles (i = 1, · · · , N , k ∈ {1, 2} in a
binary coded GA) inX andY , respectively. The probability
of identity of two randomly chosen genes isjxi = x2

i1 +x2
i2 in

the populationX, while it is jyi = y2
i1 +y2

i2 in the population
Y . The probability of identity of a gene fromX and a gene
from Y is jxyi = xi1yi1 + xi2yi2. The normalized identity of
genes betweenX andY with respect to a locus is defined as

Ii =
jxyi√

jxi

√
jyi

, (1)

1Since the assertion 1), 2) and 3) can be interpreted as the number of gene
substitutions of each genotype increases with the increase of neutrality, the
number of gene substitutions could be an index of neutrality.

where,Ii = 1.0 if the two populations have the same alleles
in identical frequencies, andIi = 0.0 if they have no common
alleles. The normalized identity of genes betweenX and Y
with respect to the average in all loci is defined as

I =
JXY√
JX

√
JY

, (2)

where,JX =
∑N

i=1 jxi/N , JY =
∑N

i=1 jyi/N and JXY =∑N
i=1 jxyi/N . The genetic distance between X and Y is

defined as

D = − loge I, (3)

under the assumption that the mutation rate per locus is
sufficiently small. However, the above definition cannot be
applied to the standard GA directly, because it is assumed that
a new allele always appears on a locus when a mutation occurs,
while “back mutations [21]” frequently occur in the standard
GA, due to the binary coding scheme. Therefore, the genetic
distance between the population at the initial generation and
the one at the last generation is calculated as:

Dfinal =
T−1∑

1

Dt,t+1 (4)

where T is the number of the last generation andDt,t+1 is
the genetic distance between the population in thet-th and the
(t + 1)-th generation. The rate of gene substitution is defined
as the genetic distance per generation.

III. T HE NEI’ S STANDARD GENETIC DISTANCE IN A

TUNABLY NEUTRAL NK L ANDSCAPE

A. A Terraced NK Landscape

A terraced NK landscape was employed as the test function
in our computer simulations. This is the tunably neutral
NK landscape proposed by Newman and Engelhardt [26]. A
terraced NK landscape has three parameters:N , the length
of the genotype;K, the number of epistatic linkages between
genes; andw, the contribution of a locus to the fitness of the
entire genotype.

The fitness value is calculated as follows: The fitness contri-
bution of thei-th locus,wi, is an integer generated randomly in
the range0 ≤ wi < F, i = 1, · · · , N . To calculate the fitness,
W , of a genotype, the fitness contribution of each locus is
averaged, and then divided byF − 1, normalizingW to the
range0.0 to 1.0. More formally:

W =
1

N (F − 1)

N∑

i=1

wi. (5)

The neutrality of the landscape can be tuned by changing the
value ofF . The neutrality of the landscape is maximized when
F = 2, and is effectively non-existent asF → ∞.
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Fig. 1. Number of substitutions at each generation for the SGA withq = 0.008 andM = 50 for F = ∞ in 50 runs

B. Simulation Conditions

We applied two genetic algorithms: the standard GA
(SGA) and the (random-sampling, q)-algorithm. The (random-
sampling, q)-algorithm employs standard bit mutation at the
rate of q as the genetic operation and random sampling as
a selection method whereM offsprings are sampled from
M ancestors with replacements. This model was used to
investigate the effect of random sampling with mutation on
the genetic distance. This is approximately equivalent with
Kimura’s stochastic genetic models to study random genetic
drift and the expected time of fixation of a mutant gene [6].

Computer simulations were conducted by varying the land-
scape parameters, the population size,M , and the mutation
rate, q. The SGA used standard bit mutation as the genetic
operation. Crossover was not employed. Tournament selection
was adopted for the SGA. The tournament size was set at2
for the SGA. Each run lasted 2,000 generations. We conducted
50 independent runs for each problem under the landscape pa-
rameters,N = 20, K ∈ {0, 2, 6, 12, 19}, F ∈ {2, 3, 4, 6,∞ 2}.
The results were averaged over50 runs.

C. Existence And Non-existence of Neutrality

The first experiments were conducted to investigate the
effect of the existence of neutrality on the transition of the
genetic distance and the number of substitutions. Fig. 1 shows
the number of substitutions of the SGA forF = ∞, where
q was set at0.008 based on the assumption of eq.(3). They

2For F = ∞, the NK fitness landscape[27] was employed instead of the
terraced NK landscape as [5], which results in practically non-existence of
neutrality.
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Fig. 2. Number of substitutions at each generation for the (random-sampling,
q)-algorithm withq = 0.008 andM = 50 in 50 runs

leveled off in the very early generations. This means that the
population converged to a certain point in the genotype space
then the genetic distance between the generations (Dt,t+1 in
eq.(4)) became zero. In contrast, the number of substitutions
of the (random-sampling, q)-algorithm (Fig. 2) and the SGA
for F �= ∞ (for instance, the results forF = 2 are shown
in Fig. 3.) with q = 0.008 increased approximately linearly
over generations in all runs. This differentiates between the
existence and the non-existence of neutrality in the fitness
landscape. That is, the increase of the number of substitutions
over generations indicates the presence of neutrality in the
fitness landscape.

In the remainder of this paper, the rates of substitution for
the (random-sampling, q)-algorithm and the SGA forF �= ∞
are shown by using the method of least squares on the results
of all the runs because the rate of substitution is equivalent to
the gradient of the number of substitutions over generations.
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Fig. 3. Number of substitutions at each generation for the SGA withq = 0.008 andM = 50 for F = 2 in 50 runs

TABLE I

THE RATE OF SUBSTITUTION FOR THESGA WITH q = 0.008 AND

M = 50

����F
K

0 2 6 12 19

2 0.002042 0.000666 0.000220 0.000131 0.000106
3 0.001307 0.000421 0.000173 0.000102 0.000104
4 0.001063 0.000318 0.000130 0.000099 0.000087
6 0.000738 0.000235 0.000128 0.000090 0.000087

TABLE II

THE RATE OF SUBSTITUTION FOR THESGA WITH q = 0.008 AND

M = 100

����F
K

0 2 6 12 19

2 0.001370 0.000401 0.000148 0.000079 0.000068
3 0.000843 0.000255 0.000096 0.000051 0.000050
4 0.000607 0.000164 0.000073 0.000057 0.000050
6 0.000405 0.000128 0.000056 0.000048 0.000044

D. Neutrality And Selective Constraint

With respect to the assertions 1), 2) and 3) in Section I,
Kimura has suggested that the rate of gene substitution is
largest when the selective advantage of a new mutation over
the original allele is zero except that the new mutation is
deleterious in a small population [6]. Thus, it seems likely
that the number of substitutions increases with the increase
of neutrality and that for the (random-sampling, q)-algorithm
is largest, becauserandom-samplingcan be considered com-
pletely neutral for selection. In addition to this, according to

TABLE III

THE RATE OF SUBSTITUTION FOR THESGA WITH q = 0.008 AND

M = 200

����F
K

0 2 6 12 19

2 0.000781 0.000263 0.000086 0.000040 0.000026
3 0.000486 0.000161 0.000051 0.000039 0.000028
4 0.000359 0.000119 0.000041 0.000029 0.000027
6 0.000238 0.000067 0.000031 0.000025 0.000026

TABLE IV

THE RATE OF SUBSTITUTION FOR THESGA WITH q = 0.008 AND

M = 400

����F
K

0 2 6 12 19

2 0.000434 0.000146 0.000043 0.000032 0.000024
3 0.000261 0.000087 0.000032 0.000025 0.000013
4 0.000193 0.000062 0.000019 0.000014 0.000019
6 0.000127 0.000050 0.000017 0.000017 0.000015

Ohta’s nearly neutral theory [21][22], the stronger the selective
constraint on the molecule is, the lower its rate of evolution
becomes. That is, the number of substitutions is likely to
decrease with the increase of selective constraint,K.

Table I and Fig. 4 show the rate of substitution for the
SGA with q = 0.008 and M = 50. Notice first that the
rate of substitution increased with the decrease ofF for all
Ks. This means that the rate of substitution increases with
the increase of neutrality as predicted. Secondly, the rate of
substitution decreased with the increase ofK for all Fs.
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Fig. 4. Rate of substitution for the SGA withq = 0.008 andM = 50
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Fig. 5. Rate of substitution for the SGA withq = 0.008 andM = 100
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Fig. 6. Rate of substitution for the SGA withq = 0.008 andM = 200
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Fig. 7. Rate of substitution for the SGA withq = 0.008 andM = 400
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Fig. 8. Rate of substitution for the SGA withq = 0.008 for F = 2
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Fig. 9. Rate of substitution for the SGA withq = 0.008 for F = 3
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Fig. 10. Rate of substitution for the SGA withq = 0.008 for F = 4
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Fig. 11. Rate of substitution for the SGA withq = 0.008 for F = 6



TABLE V

THE RATE OF SUBSTITUTION FOR THE(random-sampling, q)-ALGORITHM

WITH q = 0.008 FOR EACH POPULATION SIZE

M 50 100 200 400
rate 0.004576 0.003194 0.001971 0.001120

This means that not only neutrality but also ruggedness has
an influence on the rate of substitution. This tendency is
consistent with Ohta’s results for NK landscapes with weak
selection based on the nearly neutral theory, where the number
of substitutions decreases with the increase ofK [22][28].
Similar behavior toM = 50 is shown for each population
sizeM = {100, 200, 400} (Table II, III and IV, and Fig. 5, 6
and 7).

The rate of substitution for the (random-sampling, q)-
algorithm with eachM is shown in Table V. It is confirmed
that for eachM , the rate of substitution for the (random-
sampling, q)-algorithm was always larger than any others for
the SGA withK andF (from Table I to IV ). This agrees with
our expectation.

E. Varying The Population Size

In the next experiments, the analysis was extended by
varying the population size. According to Ohta’s nearly neu-
tral theory [21][22], population movement depends on the
population size. That is, mutant dynamics becomes slower
by increasing the population size. This is demonstrated from
Fig. 8 to 11 and Table V. With the increase of the population
size, the rate of substitution decreased for eachK and F .
Therefore, the larger the population size becomes, the slower
the population moves. This tendency is also consistent with
Ohta’s results for NK landscapes with weak selection based
on the nearly neutral theory, where the number of substitutions
decreases with the increase of the population size [22][28].

Table V shows the rate of substitution for the (random-
sampling, q)-algorithm with eachM . The rate of substitution
also decreased with the increase of the population size.

F. Varying The Mutation Rate

In population genetics, it is assumed that the mutation rate
per locus is sufficiently small as mentioned in Section II. In the
last series of experiments, the transition of the Nei’s genetic
distance were observed by varying the mutation rate fromq =
0.005 to 0.010 and0.1 for the SGA withM = 50.

Fig. 12 shows the results with q =
{0.005, 0.006, 0.007, 0.008, 0.009, 0.010}. In this range,
the rate of substitution increased with the increase of the
mutation rate for eachK andF . For eachq, similar behaviors
were observed to the results withq = 0.008 in the previous
subsections. In contrast, the results withq = 0.1 show
the different behaviors (Fig. 13). Surprisingly, the rate of
substitution increased with the increase ofK for all Fs.
In addition to this, no significant differences were found
between the graphs of differentFs. The rate of substitution
for the (random-sampling, q)-algorithm with q = 0.1 was
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Fig. 12. Rate of substitution for the SGA withM = 50: The solid lines,
from left to right, correspond to the rate of substitution forF = 2 with
q = {0.005,0.006,0.007,0.008,0.009,0.010}. Similaly, the dashed lines
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Fig. 13. Rate of substitution for the SGA withq = 0.1 andM = 50

0.0135733. Thus, the rate of substitution for the SGA was
higher than that for the (random-sampling, q)-algorithm for
K > 2 and all Fs. This implies that artificial evolution has
changed into random search, caused by the mutation rate
which is larger than theerror threshold[17].

From the above, we confirmed that the Nei’s genetic dis-
tance depends on the mutation rate, and can be used as long
as the mutation rate is sufficiently small compared with the
error threshold.

IV. D ISCUSSION

In the previous section, it has been shown that population
movement depends on the population size. If the population
size is small, the population for the SGA moves quickly. This
would have the advantage of flexibility. As pointed out in [22],
evolution would become more flexible for a small population
size than for a large population size, particularly when the
environment is not static, that is, the fitness landscape changes
occasionally. On the other hand, it has been reported that as the
population size becomes too small, it becomes easier for the
population to lose the current best individuals through random
sampling or mutation and fall to lower neutral networks [20].
This phenomenon is due to the influence of the error threshold
on the population size3. This would be more understandable

3It has been known that there are two kinds of error threshold: on the
mutation rate and on the population size [20][17].



by considering the population movement. Due to the small
population size, the population on the neutral networks moves
too quickly to keep the current neutral network. This implies
that there exists the optimal population size that keeps the
fastest speed as well as avoids the influence of the error
threshold.

The same discussion can be applied to the error threshold
on the mutation rate mentioned in Section III-F [17][18].

V. CONCLUSIONS

We have investigated the characteristics of the Nei’s stan-
dard genetic distance by applying it to the Terraced NK
landscapes, and shown the consistencies of the results with
the neutral theory and the nearly neutral theory in population
genetics. Based on the presented results, we discussed the
influence of the error threshold on the population size and
the mutation rate.

The characteristics of the number of substitutions estimated
by the Nei’s genetic distance can be summarized as follows:

When the mutation rate per locus is small,
• Random sampling with mutation results in the largest

number of substitutions.
• The number of substitutions increases with the increase

of neutrality.
• The number of substitutions decreases with the increase

of ruggedness where the landscape includes neutrality.
• The number of substitutions decreases with the increase

of the population size.

These results can be predicted mainly by the assertion of the
neutral theory and the nearly neutral theory, “functionally less
important molecules or parts of a molecule evolve faster than
more important ones”. Consequently, these allow us to under-
stand the evolutionary dynamics of GAs from the viewpoint of
population genetics using the Nei’s standard genetic distance.
Therefore, this method will play a significantly important role
that connects artificial evolution and natural evolution.
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