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Abstract

Neutral networks, which occur in fitness land-
scapes containing neighboring points of equal fit-
ness, have attracted much research interest in re-
cent years. In this work, we applied a standard GA
and an extended GA with a variable mutation rate
strategy to an abstract model of neutral networks in
order to investigate the effects of selection pressure
and mutation rate on the speed of population move-
ment. Our results demonstrate that speed has an
optimal mutation rate and an error threshold since
plotting speed against mutation rate results in a con-
cave curve. Increasing selection pressure increased
the speed of a population’s movement on a neutral
network. The variable mutation rate strategy of the
extended GA improved the efficiency of the search.
For both GAs, we found that high selection pressure
was preferable, both for increasing the speed of pop-
ulation movement and for avoiding the effects of an
error threshold on a neutral network.

1 Introduction

Selective neutrality has been found in many real-
world applications of artificial evolution, such as the
evolution of neural network controllers in robotics
[1], and on-chip electronic circuit evolution [2]. This
characteristic, caused by highly redundant mappings
from genotype to phenotype, is also found in natu-
ral systems, and has been of particular interest to
evolutionary theorists and molecular biologists [3].
Landscapes which include neutrality have been con-
ceptualized as containing neutral networks.

Harvey [4] first introduced the concept of neutral
networks into the GA community. His definition is
as follows: “A neutral network of a fitness landscape
is defined as a set of connected points of equivalent
fitness, each representing a separate genotype: here
connected means that there exists a path of single
(neutral) mutations which can traverse the network
between any two points on it without affecting fit-

ness.”

It has been shown that there is a clear transition
in evolutionary dynamics for populations on neutral
networks over the mutation rate range. At a very
low mutation rate, the population is maintained in a
cluster on the neutral network, analogously to quasi-
species [5]. As the mutation rate increases, the pop-
ulation gradually loses the current network. That is,
some individuals fall to lower neutral networks. At
a certain critical mutation rate, the whole popula-
tion will have fallen to lower neutral networks. This
mutation rate is called the phenotypic error thresh-
old* [7][8]. Generally, the error threshold sets the
upper limit for a mutation rate that will enable effi-
cient search. This implies that if we adopt a constant
mutation rate strategy, we should set a low mutation
rate so as to avoid any error threshold effects dur-
ing the process of evolution. From a practical point
of view, however, it would be efficient to shorten the
equilibrium period? which dominates the whole com-
putation (Fig. 1). One approach would be to employ
variable mutation rate strategies, which change the
effective mutation rate adaptively during the process
of evolution. Another would be to investigate the ef-
fects of the constant (base) mutation rate, selection
pressure and population size on search efficiency.

In this paper, we employ a standard GA, which
employs a constant mutation rate, and an extended
GA, which can change its mutation rate strategy, in
order to investigate the effect of the selection pres-
sure and mutation rate on the speed of population
movement. Section 2 describes an abstract model
of very simple neutral networks, called the Balance
Beam Function, which is used as a test problem in
this work. Section 3 gives the results of our computer
simulations. Section 4 discusses the effect of selec-
tion pressure and the variable mutation rate strategy

IThese concepts originate from molecular evolution [6].
2An equilibrium period is a period during which mean fit-
ness of the population does not change [8].
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Figure 1: Typical evolutionary dynamics on a fitness
landscape featuring neutral networks, which can be
classified into transient periods and equilibrium pe-
riods [8]: Instead of being stuck in a local optimum,
populations may be exploring in the genotype space.

on the evolutionary dynamics on the simple neutral
networks. Conclusions are given in the last section.

2 Abstract Model of Simple Neutral
Networks

The Balance Beam Function, proposed by Yasuda
et al. [9], was employed as the test function in our
computer simulations. It is relatively easy to in-
vestigate evolutionary dynamics with this function,
because it has a landscape composed of only two
neutral networks, each of a different fitness—one of
which has the shape of a “balance beam”. The Bal-
ance Beam Function (BBF) is formulated as follows:
F=10,if (A< Y, s < B)and F = 0.0, other-
wise, where F', [ and s; € {0, 1} are the fitness value,
the length of the genotype and the value of the i-th
locus, respectively. A and B (0 < A < B <)
are constant integers. The neutrality is tunable by
changing A and B. The abstract width, w, of a
neutral pathway is calculated as B — A. We focus
on the moving speed of the individuals which keep
remaining on the higher neutral network (F = 1.0).

As the initial setting, all individuals in the popu-
lation are placed on a particular point on the higher
neutral network, for instance, s; = 1,7 = 1,...,d
and s; = 0,i = d+ 1,...,l, where d is a constant
integer between A and B. This would be a situa-
tion similar to a population just after a transition
period. In the process of evolution, each individual
moves along the pathway by flipping the values of
loci. Distance is defined as the number of Os be-
tween the 1st locus and the d-th locus if the indi-
vidual is on the higher neutral network. Distance
is not defined for an individual on the lower neutral
network. Therefore, the moving speed of a popula-
tion can be measured as the number of generations
(for generational GAs), or the number of evaluations
(for steady state GAs) for one of individuals to reach
the furthest distance, d. For the BBF, the optimal
mutation rate, q,, is identified as the mutation rate
which results in the fastest speed over the mutation

rate range. The phenotypic error threshold, ge,,, is
identified as the mutation rate where the transition
mentioned in Section 1 occurs.

3 Computer Simulations
3.1 Simulation Conditions

Computer simulations were conducted by setting
the population size to 50 and the length of the geno-
type to 200. The extended GA used in this paper
is called the operon-GA [10]. The operon-GA uses
standard bit mutation and five additional genetic
operators: connection, division, duplication, deletion
and dnversion. The probabilities for genetic opera-
tions were set at 0.3 for connection and division, 0.1
for duplication and 0.05 for deletion and inversion,
as recommended by Ohkura and Ueda [10]. The
length of the value list in a locus was 6. The ge-
netic operation for the standard GA was standard
bit mutation. For both GAs, the per-bit muta-
tion rate, g, was set between 0.00001 and 0.1 with
step sizes of Ag = 0.0001 (if ¢ < 0.001), 0.001 (if
0.001 < ¢ < 0.01) and 0.01 (if 0.01 < ¢ < 0.1).
Crossover was not used for either GA. Tournament
selection was adopted. Elitism® was optionally ap-
plied. The tournament size was set at s = 2,4
and 6. A generational GA was used. Each run
lasted 10,000 generations*. We conducted 10 inde-
pendent runs for each problem with the parameters
(A, B) = (19,20),(19,24), (19,29) and (19, 39); that
is, with neutral pathways of width w = 1,5,10 and
20. d was set at 19. All results were averaged over
10 runs.

3.2 Simulation Results

Fig. 2 and 3 show the average number of gener-
ations to reach the furthest distance, d, with s =
{2,4,6} and w = {1,5,10,20}, for non-elitism and
elitism, for the standard GA (SGA) and the operon-
GA (OGA) respectively. The curves are U-shaped
as a function of the mutation rate, ¢, and have an
optimal mutation rate and an error threshold.

With non-elitism, the speed falls sharply when ¢
exceeds ¢q,. Moreover, the optimal mutation rate is
just below the error threshold (Fig. 2(a), 2(b) and
Fig. 3(a), 3(b)). With elitism, both the optimal mu-
tation rate and the error threshold increase, and so
does the distance between them (Fig. 2(c), 2(d) and
Fig. 3(c), 3(d)).

Increasing the tournament size increases the op-
timal mutation rate and the error threshold. It also
results in improved speeds over the mutation rate
range g, < ¢ < qerr (Fig. 2(a), 2(c) and Fig. 3(a),
3(c)). Due to space restrictions we only show results

3An individual, randomly selected from those individuals
whose fitness value is 1.0, is passed unmutated to the next
generation.

4If no individual reaches the furthest distance by the final
generation, the number of generations to reach the furthest
distance is taken to be 10,000.



for w = 1. However, increasing tournament size had
the same effect for all widths.

The OGA produced higher speeds than the SGA
when ¢ was below ¢, both with non-elitism and
elitism (Fig. 4). Fig. 5 shows the average effective
mutation rate in an OGA population for non-elitism
and elitism, with s = 6, w = 1 and a per-bit mu-
tation rate ¢ = 0.001. (The evolutionary dynamics
shown are representative of all OGA runs in this
study.) The effective mutation rate is calculated as
the number of flipped bits per genotype after the ge-
netic operators have been applied. It is distributed
around the optimal mutation rate ¢, = 0.006 (for
non-elitism) and ¢, = 0.01 (for elitism).

4 Discussion

Our results suggest that optimal mutation rates
and error thresholds are strongly correlated with se-
lection pressure. With non-elitism, the optimal mu-
tation rate will be just below the error threshold.
If the mutation rate is set by estimating the opti-
mal mutation rate, a misjudgement could result in
the error threshold being exceeded, and thus lead to
poor performance. With higher selection pressure,
the optimal mutation rate and error threshold both
increase. FElitism improves the moving speed when
q is larger than ¢,. Note that extreme elitism (e.g.
50% of offspring are identical to their parents) will
reduce the moving speed, since the population will
tend to repeatedly sample the same genotypes [11].
This may be related to the effects of sampling fluc-
tuation. Nimwegen et al. [8] have suggested that
there is an appreciable chance that all individuals
on higher neutral networks will be lost through sam-
pling fluctuations®. From these results, we can say
that high selection pressure decreases the probability
with which the individuals are lost through sampling
fluctuation, with the result that the optimal muta-
tion rate and error threshold are shifted to higher
mutation rates. This would explain why, when ¢ ex-
ceeds ¢, the moving speed improves if (relatively)
high selection pressure is applied.

We have also shown that, for the BBF, the vari-
able mutation rate strategy of the OGA improves
the efficiency of the search when ¢ is less than g, as
a result of adaptively varying the effective mutation
rate.

5 Conclusions

We have investigated the effect of the selection
pressure and the mutation rate on the speed of pop-
ulation movement on landscapes with different levels
of neutrality, using a standard GA and the operon-
GA. Our results can be summarized as follows: (1)
For a given population size, the speed of a popu-
lation plotted as a function of the mutation rate

5Higher neutral networks will tend to have narrower neu-
tral pathways, with more bits on the genotype being subject
to selective constraints.

yields a concave curve with an optimal mutation rate
and an error threshold. (2) When non-elitism is em-
ployed, the optimal mutation rate will be just below
the error threshold. (3) If the mutation rate exceeds
the optimal mutation rate, increasing the selection
pressure will improve the speed at which a popula-
tion moves on a neutral network. (4) The variable
mutation rate strategy in the operon-GA improves
search efficiency when the constant mutation rate is
less than the optimal constant mutation rate.

Establishing the generality of these results will re-
quire investigating the performance of the standard
GA and the operon-GA on more complex problems.
However, our recent experiments with a more com-
plex problem, terraced NK landscapes, suggest that
these results may generalize well [12].
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