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Abstract

Neutral networks, which occur in fitness land-
scapes containing neighboring points of equal fit-
ness, have attracted much research interest in recent
years. In a recent paper [12], we have shown that, in
the case of a very simple test function, the mutation
rate of a genetic algorithm is an important factor for
improving the speed at which a population moves
along a neutral network. Our results also suggested
that a variable mutation rate strategy is beneficial
for fast and stable genetic search. In this work, we
conduct a series of computer simulations with a more
complex test function, the terraced NK landscape,
in order to investigate whether our previous results
generalize to this more complex case. Two types
of GA were used. One is the standard GA, where
the mutation rate is constant, and the other is the
operon-GA, whose effective mutation rate at each lo-
cus changes independently according to the history
of the genetic search. It is found that the variable
mutation rate strategy is also beneficial with this
more complex test function, and that these bene-
fits increase as the fitness landscape becomes more
rugged.

1 Introduction

Selective neutrality has been found in many real-
world applications of artificial evolution, such as the
evolution of neural network controllers in robotics
[1], and on-chip electronic circuit evolution [2]. This
characteristic, caused by highly redundant mappings
from genotype to phenotype, is also found in natu-
ral systems, and has been of particular interest to
evolutionary theorists and molecular biologists [3].
Landscapes which include neutrality have been con-
ceptualized as containing neutral networks [4][5][6].

It has been shown that there is a clear transition
in evolutionary dynamics for populations on neutral
networks over the mutation rate range. At a low mu-

tation rate, the population is maintained in a clus-
ter on the neutral network. As the mutation rate
increases, the population gradually loses the current
network. That is, some individuals fall to lower neu-
tral networks. At a certain critical mutation rate,
the whole population will have fallen to lower neu-
tral networks. This mutation rate is called the phe-
notypic error threshold1 [8][9][10]. This implies that
if we adopt a constant mutation rate strategy, we
should set a low mutation rate so as to avoid any er-
ror threshold effects during the process of evolution.
However, from a practical point of view, it would be
efficient to minimize the duration of equilibrium pe-
riods; that is, periods during which the mean fitness
of the population does not change [11].

Recently, we have investigated the effect of selec-
tion pressure and mutation rate on the speed of pop-
ulation movement on very simple neutral networks,
using the Balance Beam Function (BBF) [12]. BBF
landscapes have no ruggedness. Our results can be
summarized as follows:

(1) For a given population size, plotting the speed
of population movement against its mutation
rate resulted in a concave curve, demonstrating
the existence of an optimal mutation rate and
an error threshold for speed .

(2) Without elitism, the optimal mutation rate was
just below the error threshold.

(3) High selection pressure improved the speed at
which a population moved on a neutral network.

(4) A variable mutation rate strategy [13] improved
the efficiency of the search when the constant
mutation rate was less than the optimal con-
stant mutation rate.

1These concepts originate from molecular evolution [7].



We are interested in whether these observations
are consistent with more complex problems includ-
ing not only neutrality but also ruggedness. This is
because we want to solve complex real-world prob-
lems. However, because of their complexity, investi-
gating such problems is unlikely to lead to generaliz-
able conclusions. Therefore, in this paper, we inves-
tigate the effect of ruggedness by employing a more
complex test function. Tunably neutral NK land-
scapes [8][9] incorporate both neutrality and rugged-
ness. It has been demonstrated that increasing neu-
trality does not affect the ruggedness of a tunably
neutral NK landscape, although it does reduce the
number of local optima [5][8][9]. Thus, we cannot
neglect the effect of ruggedness. In this kind of
landscape, individuals can easily get trapped on lo-
cal optima if there is a low mutation rate and high
selection pressure. However, using a low selection
pressure may require setting a much lower mutation
rate in order to avoid the effect of an error threshold
[12], and as a result evolution would proceed more
slowly. One approach to overcoming this problem
would be to adopt variable mutation rate strategies.

In this paper, we employ a standard GA, which
employs a constant mutation rate, and the operon-
GA [13], which can change its mutation rate strat-
egy. We investigate the performance of both GAs
with different selection pressures. Section 2.1 de-
scribes the terraced NK landscape, which is used as
a test problem in this work. Section 2.2 describes the
simulation conditions. Section 2.3 gives the results
of our computer simulations. Section 3 discusses the
effect of the error threshold and the variable muta-
tion rate strategy on smooth and the rugged land-
scapes. Conclusions are given in the last section.

2 Computer Simulations

2.1 Test Functions

A terraced NK landscape was employed as the
test function in our computer simulations. This is
the tunably neutral landscape proposed by Newman
et al. [9]. A terraced NK landscape has three pa-
rameters: N , the length of the genotype; K, the
number of epistatic linkages between genes; and w,
the contribution of a locus to the fitness of the entire
genotype.

The fitness value is calculated as follows: The fit-
ness contribution of the i-th locus, wi, is an integer,
generated randomly in the range 0 ≤ wi < F, i =
1, · · · , N . To calculate the fitness, W , of a genotype,
the fitness contribution of each locus is averaged,
and then divided by F − 1, normalizing W to the
range 0.0 to 1.0. More formally:

W =
1

N (F − 1)

N∑

i=1

wi. (1)

The neutrality of the landscape can be tuned by

varying the value of F . The neutrality of the land-
scape is maximized when F = 2, and is effectively
non-existent as F → ∞.

2.2 Simulation Conditions

Computer simulations were conducted using a
population size of 50. The operon-GA [13] uses stan-
dard bit mutation and five additional genetic opera-
tors: connection, division, duplication, deletion and
inversion. The probabilities for genetic operations
were set at 0.3 for connection and division, 0.2 for
duplication and 0.05 for deletion and inversion, as
recommended by Ohkura and Ueda [13]. The length
of the value list in a locus was 6. The genetic oper-
ation for the standard GA (SGA) was standard bit
mutation. For both GAs, the per-bit mutation rate,
q, was set at 0.01, based on Mühlenbein’s suggestion
[16]. Crossover was not used with either GA. Tour-
nament selection was adopted. Elitism2 was option-
ally applied. The tournament size s was set at {2, 6}
because low selection pressure is generally prefer-
able with the SGA, whereas high selection pressure
is preferable with the OGA. A generational GA was
used. We conducted 50 independent runs for each
problem under the landscape parameters, N = 100,
K = {0, 5, 25, 50}, F = 2. Each run lasted 3,000
generations (K = {0, 5, 25}) and 10,000 generations
(K = 50). All results were averaged over 50 runs.

2.3 Simulation Results

Fig. 1 shows the maximum fitness at each gen-
eration for the SGA and OGA, with and without
elitism, and for different values of K and s.

For K = 0, there is no ruggedness, and the land-
scape is similar to simple neutral networks of the
BBF. Figs. 1(a) and 1(b) show the results for the
four GA conditions for s = 2 and 6 respectively. No
significant differences in performance were observed.
This is consistent with the results obtained with sim-
ple neutral networks using the BBF [12].

For K = 5, both GAs performed better with
elitism than without it for s = 2. However, for s = 6
there was no significant difference between the four
GA conditions. Fitness increased faster for s = 6
than for s = 2.

For K = 25 and K = 50, differences between
the SGA and the OGA were much more pronounced
than at K = 0 and K = 5. As with K = 5, both
GAs performed better with elitism than without it
for s = 2. The OGA was outperformed by the SGA
for s = 2, however, the OGA outperformed the SGA
for s = 6. A closer examination reveals that the
OGA performed better for s = 6 than the SGA did
for s = 2 with elitism.

2An individual, randomly selected from those individuals
with the highest fitness value, is passed unmutated to the
next generation.



3 Discussion

The evolutionary dynamics of the obtained results
in the previous section can be explained as follows:

- the effect of the error threshold
When weak selection pressure is used, the SGA and
OGA both show poor performance. The OGA per-
forms slightly worse than the SGA, as shown in
Figs. 1(c), 1(e) and 1(g). This is due to the fact
that the effective mutation rate is more likely to
exceed the error threshold when selection pressure
is weak [10] (Fig. 2(a), 2(b)). This is consistent
with the results obtained using the BBF [12].

- the variable mutation rate strategy
The variable mutation rate strategy of the OGA is a
better approach on highly rugged landscapes when
selection pressure is high. For s = 6 and, with
elitism, for s = 2, the SGA is easily trapped on
local optima when the landscape is highly rugged
(K = 25 and K = 50); in contrast, on the same
landscapes, for s = 6, the OGA continues to find
better regions. This improvement is due to the on-
line adaptation of mutation rates during process of
evolution, as shown in Figs. 2(c) and 2(d).

4 Conclusions

In this work, we applied the standard GA and
the operon-GA to terraced NK landscapes, and in-
vestigated their performance using different levels of
ruggedness and different selection pressures. Our re-
sults can be summarized as follows:

• The standard GA and the operon-GA show
very similar performance on landscapes with no
ruggedness. This is consistent with results of
our previous experiments using the BBF.

• Without elitism, both types of GA search inef-
ficiently when landscapes are rugged and selec-
tion pressure is low.

• The benefits of the variable mutation rate strat-
egy used by the operon-GA become increasingly
clear as the ruggedness of the landscapes in-
creases.

These results suggest some guidelines for tuning
the performance of GAs. Future work will investi-
gate how well these tuning guidelines apply to real-
world problems, such as the evolution of artificial
neural networks for robot control.
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(d) (K,s) = (5,6)
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(e) (K, s) = (25,2)
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Figure 1: The maximum fitness
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(b) s = 2, without elitism
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Figure 2: Average effective mutation rate by Operon-GA for K = 50 in a typical run


