
Artificial Evolution of Pulsed Neural Networks on the Motion
Pattern Classification System

Yoshiaki Katada and Kazuhiro Ohkura
Faculty of Engineering

Kobe University
Phone/Fax: +81-78-803-6135

Email: {katada, ohkura}@rci.scitec.kobe-u.ac.jp

Kanji Ueda
RACE (Research into Artifacts, Center for Engineering)

The University of Tokyo
Phone: +81-3-5453-5887 Fax:+81-3-3467-0648

Email: ueda@race.u-tokyo.ac.jp

Abstract

In natural systems, animals discriminate an object through
information coming from various receptors. In particu-
lar, object’s figure and its motion pattern are known to
be very important for quick and accurate discrimination.
In this work, to give the similar ability of discrimination
to an artificial agent, we examine whether artificial evo-
lution is capable of generating artificial neural networks
that perform discrimination tasks using the mixed in-
formation of figure and motion pattern. The results
demonstrate that evolutionary approach is successful in
developing the neural network controller using a afford-
able computational cost.

1 Introduction

Categorization is one of the most important cognitive
processes for animals and humans as well as perception
or memory. They have many ways to categorize the
world, such as through seeing, hearing, and smelling.
One of the most powerful ways is seeing. For animals
with vision, information of object figures plays the main
role in discriminating an object. However, it is known
that those animals discriminate an object not only by
its figure but also by its motion pattern [16][6]. The
information of objects figures and motion patterns is
complementary for the discrimination.

An approach to equipping a robot with such ability
is based on classical artificial intelligence. Here, the hy-
pothesis is that human designers can map from the sen-
sory inputs or patterns to an internal representation of
the categories. This kind of approach can be seen in the
connectionist models, such as artificial neural networks
and fuzzy systems where the output layer represents the
categories.

To autonomous agents, we cannot apply this classical
approach because the outputs of an agent have a great
influence on his own sensory inputs. That is, an agent
generates the sensory patterns through his behavior. If
sensory and motor systems are not coordinated, then
the system would have difficulties in behaving in the en-
vironment, because its categories are not grounded in its
experience. This problem is called, “symbol-grounding

problem” or “frame-of-reference problem”. For catego-
rization in autonomous agents, we have to take a sensor-
motor coordination into account, which serves to struc-
ture the sensory inputs. This idea is exactly one of prin-
ciples in the embodied cognitive science [11].

Thus, an agent must acquire the appropriate map-
ping between sensory inputs and motor outputs through
the interaction with the real world. One of such methods
that enable an agent to acquire the appropriate sensory-
motor coordination is the evolutionary approach. This
is also called “evolutionary robotics” [4] 1. The fitter
individuals are selected as the members of the new pop-
ulations. The individuals in this new population now
reproduce with mutations. In the process of evolution,
the mechanisms of the sensory-motor coordination are
self-organized. Consequently, the agent is capable of
discriminating between the objects without representa-
tions of the categories through the interaction with the
environment [1][12][10][9].

In this paper, we investigate whether an agent con-
trolled by the evolved neural networks can discrimi-
nate an object using the mixed information of figure
and motion pattern. We applied the standard GA to
evolve pulsed neural controllers [8] for the motion pat-
tern classification system in order to investigate the
performance of agents in the categorization task, then
discussed its evolutionary dynamics and the process of
self-organization in the neural controllers. Section 2 de-
scribes a model of Pulsed Neural Networks called spike
response model, which is used as a controller in an agent
in this work. Section 3 describes evolutionary tasks for
the discrimination of the motion patterns, then gives the
results of our computer simulations. Section 4 discusses
the evolutionary dynamics on these tasks, which is typi-
cally found in evolution of neural network controllers in
robotics. Conclusions are given in the last section.

2 Evolving Neural Controller

2.1 Spike Response Model
The agent’s behavior is controlled by the spike response
model [8], which is one of Pulsed Neural Networks (PNN).

1In evolutionary robotics, evolutionary computation is gen-
erally applied to evolve a neural network controller for an au-
tonomous agent.
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Figure 1: Neuron model.

The state of a spiking neuron is described by the voltage
difference across its membrane, which is called, “mem-
brane potential” u. Incoming spikes can increase or
decrease the membrane potential. The neuron emits a
spike when the total amount of excitation induced by
incoming excitatory and inhibitory spikes exceeds its
firing threshold θ. After firing, the membrane potential
of the neuron resets its state to a low negative voltage
during which it does not emit a new spike and gradually
returns to its resting potential (Fig. 1). This recharging
period is called the refractory period. The membrane
potential of a neuron i at time t is given as follows:

ui(t) =
∑

t
(f)
i

∈Fi

ηi(t − t
(f)
i ) +

∑
j∈Γi

∑
t
(f)
j

∈Fj

ωijεij(t − t
(f)
j ),

(1)

where t
(f)
i is the firing time of neuron i, Fi is the set

of firing times in a neuron i. The neuron i may receive
the input from presynaptic neurons j ∈ Γi. The weight
ωij is a factor which accounts for the strength of the
connection.

The function ηi accounts for neuronal refractoriness.
The mathematical description of ηi(s) is presented in
Eq.(2).

ηi(s) = − exp(− s

τm
)H(s), (2)

where s = t − t
(f)
i is the difference between the time t

and the time of firing t(f) of neuron i, τm is a membrane
time constant and H(s) is the Heaviside step function
which vanishes for s < 0 and takes a value of 1 for s > 0.

The function εij describes the response to the post-
synaptic spikes. The mathematical description of εij is
presented in Eq.(3).

εij(s) = [exp(−s − ∆ax

τm
)(1−exp(−s − ∆ax

τs
))]H(s−∆ax),

(3)
where τs is a synaptic time constant, ∆ax is the axonal
transmission delay. The amplitude of the response is
scaled via the factor ωij in Eq.(1).

2.2 The Genetic Algorithm
In this work, the agent controller is constructed by the
PNN with 15 sensory neurons, 6 fully interconnected
hidden neurons and 2 fully interconnected motor neu-
rons (Fig. 2). It has the firing threshold for each neu-
ron. We genetically encode and evolve the connection
weights among neurons and the firing threshold for each
neuron. The total number of parameters is equal to 192.
The parameters are mapped linearly with the following
ranges: connection weights ∈ [-1.0, 1.0], thresholds ∈
[0.0, 3.9]. The parameters of the neurons and synapses

Sensory Neuron Hidden Neuron Motor Neuron

Right MotorLeft Motor

Figure 2: Architecture of the neural network (only a few
neurons and connections are shown).

are set as follows: τm = 4, τs = 10, ∆ax = 2 for all
neurons and all synapses in the network according to
the recommendation in the reference [3]. The standard
GA (SGA) is adopted to evolve PNN parameters. Com-
puter simulations are conducted by setting the popu-
lation size 50, the length of the genotype 1920 (80 for
the firing thresholds, 1840 for the connection weights).
Each individual is encoded as binary strings with 10 bits
for each parameter. The genetic operation for the SGA
is set to be standard bit mutation. The per-bit muta-
tion rate q is set at 0.0005. Crossover is not used with
the SGA. Tournament selection is adopted, and elitism
2 is additionally applied. The tournament size is set at
2. A generational GA is used. Each run lasted 10000
generations.

3 Motion Pattern Classification

3.1 Experiment I
Beer [1] has demonstrated that an agent controlled by
dynamical neural networks can discriminate an object
by its figure. Moreover, an agent must be able to dis-
criminate an object by its motion pattern. In this pa-
per, the evolutionary task is set to be the discrimina-
tion of the motion patterns; The objects fall vertically
with the horizontal motion with a long period or a short
period (Fig. 3). The agent must discriminate between
the motions, catching (move close to) the long period
while avoiding the short period. An array of proximity
sensors allows an agent to perceive an object that falls
down from the top of an arena. If an object intersects
a proximity sensor, the sensor outputs a value inversely

2The individual randomly selected from the individuals whose
fitness value indicate maximum at the generation is passed to the
next generation as a parental individual.
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Figure 3: Experimental setup for the discrimination of
the motion patterns. Two kinds of period to be classified
(left) and the agent with the ray of the proximity sensors
in an arena (right).
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Figure 4: Best and average fitness of the population over
generations.

proportional to the separation between the object and
the agent. The agent can move horizontally along the
bottom. In our experiment, the agent of diameter 30
had 15 proximity sensors of maximum length 220 uni-
formly allocated over a visual angle of 49 degrees. The
horizontal velocity of the agent is proportional to the
sum of opposing forces produced by a pair of effectors
(with a constant of proportionality of 8). The circular
object of diameter 30 drops from the top of an arena
with a vertical velocity of 4, a horizontal amplitude of
30 and an initial horizontal offset within ±50. The hor-
izontal velocity is ±10 (12 steps in a period) for a long
period (LP) and ±30 (4 steps in a period) for a short
period (SP).

The performance measure to be maximized is as fol-
lows:

Fitness = 1000

NumTrials∑
i=1

Pi

NumTrials
, (4)

where NumTrials is the number of trials for an indi-
vidual (8 trials for each period) and

Pi =

{
1 − di, (LP )
di, (SP )

(5)

here,

di =

{
1, hdi > 60
hdi/60, hdi ≤ 60

(6)

hdi is the final horizontal separation between the center
of the agent and the object.

Fig. 4 shows the maximum and average fitness against
the generation. The equilibrium periods are found in
the period a (between generation 300 and 1,500), b
(2000 and 3000), c (3000 and 4000), and d (4000 and
10000). The most of the time is spent in the equilib-
rium period. The typical behavior of the best agent
in generation 10000 is shown in Fig. 10(k) and 10(l).
The two figures differ only in the last half steps. Until
around 250 steps, the agent is located at the center of
the arena. Then the left motor neuron (Ol) repeatedly
firing makes the agent move close to the object in the
case of LP (Fig. 5(a),5(b)). On the contrary, in the case
of SP, the right motor neuron (Or) repeatedly firing
makes the agent avoid the object because the left motor
neuron almost never fires (Fig. 5(c),5(d)).
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(a) Sensory inputs for LP
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(b) Membrane potentials for LP
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(c) Sensory inputs for SP
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(d) Membrane potentials for SP

Figure 5: The best agent in a typical run in generation
10,000.
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Figure 6: Experimental setup for the discrimination of
the objects by both figures and motion patterns.

3.2 Experiment II
In the previous section, the experiment I demonstrates
that an agent controlled by the evolved neural networks
is able to discriminate an object by its motion pattern.
As for the next step, an agent must be able to discrim-
inate an object by both figures and motion patterns.
Thus, another evolutionary task in this paper is the
discrimination of an object by both figures and motion
patterns; The objects fall either vertically or diagonally
from above (Fig. 6(a)). The agent must discriminate
between the forehand figures of the object (Fig. 6(b)).
The object drops from the top of an arena with a ver-
tical velocity of 4, a horizontal velocity of ±2.5 and an
initial horizontal offset within ±50.

The performance measure to be maximized is as fol-
lows:

Fitness = 1000

NumTrials∑
i=1

Pi

NumTrials
, (7)

where NumTrials is the number of trials for an indi-
vidual (16 trials for each pattern) and

Pi =

{
1 − di, (SqL + L,SqR + R)
di, (SqL + R,SqR + L)

(8)

here,

di =

{
1, hdi > 120
hdi/120, hdi ≤ 120

(9)

Fig. 7 shows the maximum and average fitness against
the generation. The equilibrium period is found in the
period between generation 3500 and 5800. The most of
the time is spent in the equilibrium period as well as in
the experiment I.

The typical behavior of the best agent is shown in
Fig. 8. Two figures exhibit a qualitative similarity in the

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000

F
itn

es
s

Generation

best
average

Figure 7: Best and average fitness of the population over
generations.

0

50

100

150

200

250

-100 -50 0 50 100

V
er

tic
al

 P
os

iti
on

Horizontal Position

(a) Catch category

0

50

100

150

200

250

-100 -50 0 50 100

V
er

tic
al

 P
os

iti
on

Horizontal Position

(b) Avoid category

Figure 8: Behavior of the best individual in generation
10,000.

first half steps. Until around 300 steps, the agent is lo-
cated at the center of the arena repeatedly scanning the
object. Then the left and right motor neuron repeatedly
firing makes the agent remains close to the object in the
case of a “catch” category (Fig. 9(a),9(b)). On the con-
trary, in the case of a “avoid” category, the right motor
stops firing then the left motor neuron fires for the agent
to avoid the object for last 250 steps. (Fig. 9(c),9(d)).

4 Evolutionary dynamics

In the experiment I and II, the equilibrium periods are
found where a number of mutations do not have an effect
on the fitness of individuals. This kind of fitness land-
scape including neutrality is called, “neutral networks”
[15][5][13][2] which is typically found in evolution of neu-
ral network controllers in robotics as well as in the other
real-world applications of artificial evolution, such as on-
chip electronic circuit evolution [14] and so forth.

Table 1 shows the Hamming distance between the
maximum individual at the beginning of the period and
the one at the end (Fig. 4) in Experiment I. A number
of bits are flipped during the equilibrium period even
though the maximum individual is not identical to the
previous one. Additionally, there are more changes in
the genotype space than in the fitness space. This in-
dicates that the fitness landscape forms typical neutral
networks. Compared to the genes for the firing thresh-
olds, more bits are flipped in the genes for the connec-
tion weights in the equilibrium period. Fig. 10 shows
the motion trajectories relative to the best agent of ob-
jects falling vertically with a horizontal velocity from
several different initial horizontal offsets. At generation
300, some trials are found where the best agent can dis-
criminate between both LP and SP. By generation 3000,
the agent has become to discriminate between both LP
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(b) Membrane potentials for a catch cate-
gory

0
0 100 200 300 400 500 600

10

0
0 100 200 300 400 500 600

9

0
0 100 200 300 400 500 600

8

0
0 100 200 300 400 500 600

7

0
0 100 200 300 400 500 600

6

0
0 100 200 300 400 500 600

5

0
0 100 200 300 400 500 600

4

0
0 100 200 300 400 500 600

3

0
0 100 200 300 400 500 600

2

0
0 100 200 300 400 500 600

1

0
0 100 200 300 400 500 600

15

0
0 100 200 300 400 500 600

14

0
0 100 200 300 400 500 600

13

0
0 100 200 300 400 500 600

12

0
0 100 200 300 400 500 600

11

(c) Sensory inputs for a avoid category

-2
0
2

0 100 200 300 400 500 600

O
 r

-2
0
2

0 100 200 300 400 500 600

H
 6

-2
0
2

0 100 200 300 400 500 600

H
 5

-2
0
2

0 100 200 300 400 500 600

H
 4

-2
0
2

0 100 200 300 400 500 600

H
 3

-2
0
2

0 100 200 300 400 500 600

H
 2

-2
0
2

0 100 200 300 400 500 600

H
 1

-2
0
2

0 100 200 300 400 500 600

O
 l

(d) Membrane potentials for a avoid cate-
gory

Figure 9: The best agent in a typical run in generation
10,000.
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Figure 10: Behavior of the best individual for LP and
SP in the process of evolution.



and SP on the most of the trials except peripheral trials.
The ability of the generalization for initial horizontal off-
sets is improved with the increase of the fitness. This is
the result of the modulation in the connection weights
as shown in Table 1. From these results, we can say
that the pulsed neural controller is self-organized to en-
hance the generalization for initial horizontal offsets in
the process of evolution.

As for the next step, we are planning to propose an
useful genetic algorithm to solve the real-world prob-
lems whose fitness landscape includes neutral networks.
These experiments will be reported in detail [7].

Table 1: Hamming distance between the best individuals
at the first generation and last generation in the periods.

period a period b period c period d
θ 25 12 15 17
ω 651 517 473 802

5 Conclusions

In this work, we applied the standard GA to evolve
pulsed neural controllers for the motion pattern classifi-
cation system in order to investigate whether an agent
controlled by the evolved neural networks can discrimi-
nate an object using the mixed information of figure and
motion pattern and discussed its process of evolution in
the neural controllers.

The obtained results can be summarized as follows:

• The agent controlled by the evolved neural net-
works can discriminate between the objects with
the different motion patterns. Moreover, it can
discriminate between the objects by both figures
and motion patterns.

• In the process of evolution, the fitness is improved
mainly by the modulation in the weights among
neurons.

• The equilibrium periods are found where a number
of mutation does not have an effect on the fitness of
individuals. This means that the fitness landscape
forms typical neutral networks.

As we have demonstrated that the evolved agent is
able to discriminate an object using the mixed informa-
tion of figure and motion pattern, the most interesting
challenge we front is to investigate in what form the
categories are stored in the neural controllers.
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[16] J. von. Uexküll. Theoretical Biology. Kegan Paul,
Trench, Trubner & Co, London, 1926.


