
Book Title
Book Editors
IOS Press, 2003

1

An Update Method of Computer
Simulation for Evolutionary Robotics

Yoshiaki KATADA a,1 and Kazuhiro OHKURA b

a Faculty of Engineering, Setsunan University
b Faculty of Engineering, Kobe University

Abstract. One of advantages of evolutionary robotics over other approaches is its
parallel population search. However, it generally takes an unrealistically long time
to evaluate all candidate solutions by using a real robot. Thus, a technique of com-
puter simulation is considered to be one of the most important topics in evolution-
ary robotics. Although it is quite difficult to provide a precise computer simula-
tion model of a physical experiment, simulated robot/environment interaction dy-
namics must be synchronously consistent with the physical one during its evolu-
tion for reducing the gap between the simulated and physical one. In this paper,
in order to overcome this problem, we propose an update method of simulated
robot/environment interaction dynamics based on a statistical test during evolution,
and then investigate the consistency between the performances of a robot in the
simulated and physical environment. A series of experiments with a mobile robot
illustrate the effectiveness of the proposed method in practice.

Keywords., Simulation, Real robot, Evolutionary robotics, Embodied cognitive
science

1. Introduction

Embodied cognitive science[1] have attracted much research interest in recent years,
where a robot must interact with a real world environment for obtaining successful
and robust behaviors. One of approaches in embodied cognitive science is evolutionary
robotics (ER)[2], where robot control systems are designed by using evolutionary tech-
niques.

It has been pointed out that evolutionary approaches are potentially advantageous
over other approaches due to their parallel population search. However, a number of
trials needed to evaluate all individual in a real environment make difficult the use of
physical robots during evolution, especially in the case of tasks with human intervention.
One approach to overcoming this problem would be multiplying the number of the same
real robots for the evaluation of individuals [3]. However, a controller should be robust
enough to work well for all robots because it may perform differently due to slight dif-
ferences in the electronics and mechanics of robots, even if they are apparently identi-
cal. Addition to this, the approach may result significantly expensive due to preparing a
number of robots.

1Correspondence to: Yoshiaki KATADA, 17-8 Ikeda-nakamachi, Neyagawa, Osaka 572-8508, JAPAN.
Tel./FAX: +81 728 39 9148; E-mail: katada@ele.setsunan.ac.jp



2 Y. Katada and K. Ohkura / An Update Method of Simulation for ER

The other approach would be the use of simulations. Computer simulations may be
helpful to reduce the amount of experimental time to evaluate individuals in a population.
However, the controllers evolved in a simulated environment do not always work well
in the real one because of uncertain effects, e.g., noise and differences in the electronics
and mechanics of robots, as Brooks pointed out [4]. Therefore, the validity of simula-
tions is particularly relevant problem. Some researchers claimed that the problem de-
scribed above can be overcome by carefully designing simulators. Jakobi et al. claimed
that the addition of noise to relevant parts for a control task in a simulated environment
can reduce the discrepancy between the simulated and real environment. However, such
relevant parts are different on tasks and the detections are crucially dependent on prior
knowledges of an experimenter. Miglino et al. [6] developed a simulator which requires
experimental and multiple samplings for constructing a detailed model of sensors and
motors, and claimed that such a method can reduce the performance gap between simu-
lated and real environments. The authors also claimed that the decrease in performance
after the transfer of a system from a simulated environment to a real one can be re-
covered by continuing the evolutionary process in the real environment. However, the
method can not adapt to unpredictable changes in a real environment during evolution
due to fixed conditions of the simulation. Moreover, performances would not be always
improved after the transfer of a system from a simulated environment to the real one
without any consideration. An approach to overcoming this problem is to calibrate the
model of robot/environment interaction dynamics during robot’s life time. Such an ap-
proach is found in [7], where a world model is learned during robots’ life time. But it is
deterministic and composed of only the most recent data set of sensory inputs and motor
outputs.

In this paper, we propose an update method of a probabilistic model of robot/environment
interaction dynamics for a mobile robot during its evolution employing a statistical test
in order to maintain the validity of the model in simulations. The paper is organized as
follows. Section 2 describes the procedure of the proposed method. Section 3 defines
the robot control problem where the evolved neural networks are evaluated, and repre-
sentation of robot/environment interaction dynamics. Section 4 gives the results of our
experiments. Section 5 discusses the effect of the update method on performances of a
robot after the transfer to a real environment. Conclusions are given in the last section.

2. An Update Method of a Probabilistic Model of Robot/Environment Interaction

Simulated and real robot/environment interaction dynamics are denoted M(s M , aM ) and
R(sR, aR) respectively, where s is sensory inputs and a is actions. The procedure of
evolutionary algorithms with an update method can be summarized as follows:

0. Create an initial population and initial model, M0(sM , aM ).
1. Divide individuals in a population into ones to be evaluated in a real environment

and the others in a simulated one.
2. Gather data, R(sR, aR), while robots are evaluated in a real environment.
3. Update M(sM , aM ) based on R(sR, aR).
4. Evaluate the individuals in the simulated environment, M(sM , aM ).



Y. Katada and K. Ohkura / An Update Method of Simulation for ER 3

5. Select the individuals according to the fitness values evaluated in the simulated
and real environment, then apply genetic operations to create a new population of
the same size.

6. Repeat from 1. on until the terminal conditions are satisfied.

In the step 3, the Student t-test is employed in order to examine the validity of a
model in a simulation; R(sR, aR) and M(sM , aM ) are defined to be statistically iden-
tical if we fail to reject the null hypothesis that they are not significantly different. Oth-
erwise, M(sM , aM ) is corrected repeatedly until we fail to reject it. Such a definition
seems appropriate for a probabilistic model like the proposed method. The details are
described in the experimental setup.

3. Experimental Setup

3.1. The Task and the Fitness Function

A two-wheeled robot was used in the experiment (Figure 1). The robot’s source of sen-
sory input comes from an omnidirectional camera. The environment of the robot was a
rectangular arena 2400 × 2200 mm surrounded by walls colored black with a red target
placed at the upper right corner (Figure 2). The control task used in this paper was a goal
reach problem where a robot approaches to a target (goal).

Each individual of a population was tested on the robot 4 times for around 40 seconds
each (40 sensory-motor steps). At the beginning of each trial, a robot was always placed
at the same initial position, the bottom left corner, at either an upward orientation or a
rightward orientation (Figure 2). One trial ends either when the robot reaches the goal
or when 40 steps are performed without the goal. The performance measure to be max-
imized was as follows: Fitness = 1/NumTrials

∑NumTrials
i=1 (1 − Step/MaxStep)

where NumTrials is the number of trials for a robot (2 trials for each initial orientation
of a robot) and MaxStep is set at 40. The fitness function increases as the robot reaches
the goal more quickly.

3.2. Representation of Robot/Environment Interaction Dynamics

3.2.1. Simulating Motors

The number of the combination of motor commands used for operating the wheels of the
robot is 400 (20 motor commands are available for each wheel). Thus, a R is composed of
the set of displacements of a robot for each axis in figure 3, (XR(i, j), YR(i, j), ΘR(i, j)),

Note PCNote PCNote PC

Omni-directional CameraOmni-directional CameraOmni-directional Camera

Figure 1. A mobile robot

Mobile RobotMobile RobotMobile Robot

GoalGoalGoal

2400mm2400mm2400mm

2200mm2200mm2200mm

UpwardUpwardUpward

RightwardightwardRightward

Figure 2. Experimental setup for a goal reach prob-
lem



4 Y. Katada and K. Ohkura / An Update Method of Simulation for ER

Figure 3. Displacement of a mobile robot in a simulated environment

for a motor command, (i, j) (i, j = 1, · · · , 20 for the left and right wheel). Based
on these data, the set of displacements for each axis in a simulated environment,
(XM (i, j), YM (i, j), ΘM (i, j)), is constructed as aM . In a probabilistic form, the dis-
placements of a two-wheeled robot for each motor command (i, j) are represented as fol-
lows [8]: x(i, j) = N(µ(XM (i, j)), σ(XM (i, j))), y(i, j) = N(µ(YM (i, j)), σ(YM (i, j))),
θ(i, j) = N(µ(ΘM (i, j)), σ(ΘM (i, j))), where N(µ, σ) is the normal distribu-
tions with mean, µ, and standard deviation, σ, derived from the sampled data set,
(XM (i, j), YM (i, j), ΘM (i, j)). Thus, a position of a simulated robot at the t-th step
for each axis is computed as follows: xt+1 = xt + x(i, j), yt+1 = yt + y(i, j),
θt+1 = θt + θ(i, j).

3.2.2. Simulating Sensors

For this experiment, an omni-directional visual sensor was used for the sensory inputs
of the robot (Fig. 4). The sensory inputs of an omni-directional vision was computed as
follows. The binarized image is taken from an omni-directional image, where the center
of the image is identified with the center of a robot (Figure 4(a)). In the image, the
direction of the center of gravity of the target to a robot and the distance between a robot
and the nearest point of the target are first calculated by using the pixel informations.
Next, the image is divided into I individual cells in a circumferential direction and J
individual cells in a radial direction (Figure 4(b)) to detect a target by using the above two
values (Figure 4(c)) and walls by using the pixel informations with a threshold (Figure
4(d)) on each cell (qij = {0, 1}, i = 1, . . . , I;j = 1, . . . , J), where qij signifies the
presence or absence of the object. If an object whose height is almost the same as the
one of the robot is detected in the j-th cell, the one is also detected in the (j + 1)-th cell
due to the shape of an omni-directional mirror. The walls are also detected for each cell
(Figure 4(d)).

In a simulation, omni-directional visual sensors were computed as well as the real
ones, assuming binarized images taken from the simulated image. In this experiment, we
kept sM constant during evolution, that is, the model of sensory inputs was not updated
due to the reliability of omni-directional visual sensors and the precision of the model
based on the characteristic of them.

3.3. An Update Method of Displacements of a Simulated Robot

According to the procedure described in section 2, we explain the details to update and
correct a model of displacements of a robot, aM .



Y. Katada and K. Ohkura / An Update Method of Simulation for ER 5

ObjectObjectObject

WallWallWall

11
22

33

44

55

66

77
88 999

101010

111111

121212

131313

151515
161616

11
22
33
44

141414

(a) Camera image

Edge

WallWallWall

(b) Binarized image

Input Cell

(c) Target detection

Input Cell

(d) Wall detection

Figure 4. Omni-directional image plane

For measuring the positions of a real robot during evaluations of it, a CCD cam-
era was positioned on the top of the testing environment. Every 0.5 seconds, the dis-
placements are computed as follows: xR(i, j) = xt+1(i, j) − xt(i, j), yR(i, j) =
yt+1(i, j) − yt(i, j), θR(i, j) = θt+1(i, j) − θt(i, j). After the evaluations, all the data
set in (XR(i, j), YR(i, j), ΘR(i, j)) are add to (XM (i, j), YM (i, j), ΘM (i, j)) as well as
the data set before this 500 generations in it are deleted to keep the data set fresh.

In order to examine the validity of aM , the Student t-test was conducted with
the null hypotheses, µ(XM (i, j)) = µ(XR(i, j)), µ(YM (i, j)) = µ(YR(i, j)) and
µ(ΘM (i, j)) = µ(ΘR(i, j)). If the hypotheses are rejected, that is, there are discrepan-
cies between aM and aR, then XM (i, j), YM (i, j), ΘM (i, j) are corrected, respectively.
For instance, if µ(XM (i, j)) < µ(XR(i, j)) and the hypothesis is rejected with a sig-
nificance level, α, then the smallest data in XM (i, j) is removed to reduce the discrep-
ancy between them. These corrections are repeated until when all the hypotheses are ac-
cepted. Based on the corrected data set, (X

′
M (i, j), Y

′
M (i, j), Θ

′
M (i, j)), displacements

of a simulated robot are computed as follows: x(i, j) = N(µ(X
′
M (i, j)), σ(X

′
M (i, j))),

y(i, j) = N(µ(Y
′
M (i, j)), σ(Y

′
M (i, j))), θ(i, j) = N(µ(Θ

′
M (i, j)), σ(Θ

′
M (i, j))).

In the experiments carried out in the next section, we take α = 0.05. For constructing
initial aM0 , 10 data set are sampled for each motor command in advance. aM is updated
after evaluations of real robots equipped with the best and second controller every 50
generations.

3.4. Simulation Conditions

For this experiment, an agent’s controller was pulsed neural networks (PNN) with 128
sensory neurons corresponding to the number of cells I × J in Figure 4(c) and 4(d)
for detecting a target and walls, 2 fully interconnected motor neurons and a fully in-
terconnected hidden neuron. The network’s connection weights and the firing threshold
for each neuron were genetically encoded and evolved. The total number of parameters
was 396. The parameters were mapped linearly onto the following ranges: connection
weights, ω ∈ [−1.0, 1.0], and thresholds, θ ∈ [0.0, 3.9]. The parameters of the neurons
and synapses were set as follows: τm = 4, τs = 10, ∆ax = 2 for all neurons and all
synapses in the network following the recommendations given in [9]. The experiment
was conducted using populations of size 50. Each individual was encoded as a binary
string with 10 bits for each parameter. Therefore, the total length of the genotype was
L = 3960. An extended GA, which is called the operon-GA (OGA)[10], were employed



6 Y. Katada and K. Ohkura / An Update Method of Simulation for ER

to evolve the PNN parameters 1. The OGA uses standard bit mutation and five addi-
tional genetic operators: connection, division, duplication, deletion and inversion. The
probabilities for genetic operations were set at 0.3 for connection and division, 0.6 for
duplication and 0.3 for deletion and inversion, based on our previous results in [11,12].
The length of the value list in a locus was 6. The per-bit mutation rate, q, was set at
1/L = 0.00025. Crossover was not used for the OGA, following Nimwegen’s suggestion
[13]. Tournament selection was adopted. Elitism was optionally applied. The tournament
size was set at 6 because the OGA prefers high selection pressure. A generational model
was used. Each run lasted 2, 000 generations.

The individuals in a population were divided into two groups before evaluations in a
real environment as described in section 2; Two individual (the best and second one) of
the population to be evaluated in a real environment and the others in a simulated one.

4. Experimental Results

Figure 5 shows the maximum and average fitness at each generation for the OGA. The
maximum fitness increased in the early generations without being trapped on local op-
tima although the fluctuations are large in the middle generations.

In order to verify what happens at the level of behaviors, we compared the trajecto-
ries of the best evolved individual of 2, 000 generations in the simulated and in the real
environment. Figure 6 and 7 show the typical behaviors from the initial orientation of the
best evolved robot. In the simulated environment (Figure 6), the robot at the initial right-
ward orientation approached to the goal turning left to direct toward it. This trajectory
matched almost perfectly the one in the real environment (Figure 7). It demonstrates that
the proposed update method reduces very significantly the discrepancy between behav-
iors in the simulated and real environment. Due to space restrictions we only show results
for the behavior at the initial rightward orientation. However, the discrepancy between
behaviors in the simulated and real environment was also reduced at the initial upward
orientation.

5. Discussion

In order to investigate the validity of the proposed update method, we compared the per-
formance of the robot controller evolved in both a simulated and real environment with

1In the preliminary runs, it has been confirmed that the OGA outperformed the standard GA in this problem.

0.0

0.5

1.0

0 500 1000 1500 2000

F
itn

es
s

Generation

Max
Average

Figure 5. Maximum and average fitness at each gen-
eration for the OGA

Mobile Robot

Goal

Figure 6. Behavior of the best evolved robot in the
simulated environment



Y. Katada and K. Ohkura / An Update Method of Simulation for ER 7

11StartStartStart

GoalGoalGoal

22 33 44

Figure 7. Behavior of the best evolved robot in the real environment

Table 1. Success Rate(%) for Each Method

Initial orientation Upward Rightward Total

Without update 10 0 5

With update 40 100 70

the updates, the method with update, with the performance of the evolved one only in
a simulated environment without any update, the method without update. An additional
experiment was therefore conducted. We evolved robot controllers only in a simulated
environment without any update in 2, 000 generations and then transfered the obtained
control system to the real environment. The initial data set, aM0 , were used until the last
generation in the method without update. The representation of robot/environment inter-
action dynamics in the method without update was the same as the one in the method
with update. It is likely that the controller evolved only in a simulated environment is
not robust enough to work well when transfered to the real environment because it may
have discrepancies between the simulated and real environment. Table 1 shows the rates
achieving the task in the 10 trials for the controllers evolved by the method with and with-
out update. As predicted, the degradations in performance after the transfer of the system
from the simulated environment to the real one are observed in the controllers evolved
only in the simulated environment. Moreover, the controller evolved by the method per-
formed better with update than without it for both initial orientation of a robot. This result
indicates the effectiveness of the proposed method.

6. Conclusions

In this work, we proposed an update method of simulated robot/environment interaction
dynamics for an evolutionary mobile robot during its evolution employing a statistical
test in order to maintain the validity of a model in the simulation. Our results can be
summarized as follows:

• An update method of a probabilistic model of robot/environment interaction dy-
namics was designed to reduce the discrepancy between the simulated and real
environment.

• The proposed method successfully reduced the gap between performances ob-
served in a simulated environment and performances obtained in the real environ-
ment.

• In order to investigate the benefits of the proposed method, the performance of the
best evolved robot after the transfer to the real environment is compared with the



8 Y. Katada and K. Ohkura / An Update Method of Simulation for ER

one by the method employing only simulation. The proposed method performed
better than the method employing only simulation.

These results suggest some guidelines for reducing the gap between performances
observed in simulated environment and performances obtained in the real environment
for evolved robots. Future work will investigate how well these updating guidelines apply
to more complex experiments to be performed, e.g., updating a model of sensory inputs
and humanoid robots.

References

[1] R. Pfeifer. and C. Scheier, Understanding Intelligence, MIT Press, Cambridge, 1999.
[2] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and Technology

of Self-Organizing Machines, MIT Press, 2000.
[3] R. A. Watson, S. G. Ficici and J. B. Pollack, Embodied Evolution: Embodying an Evolu-

tionary Algorithm in a Population of Robots, In Proceedings of Congress on Evolutionary
Computation, pp.335-342, 1999.

[4] R. A. Brooks, Artificial Life and Real Robots, In Proceedings of the First European Confer-
ence on Artificial Life, pp.3-10, 1992.

[5] N. Jakobi, Half-baked Ad-hoc and Noisy: Minimal Simulation for Evolutionary Robotics, In
Proceedings of the Fourth European Conference on Artificial Life, pp.348-357, 1997.

[6] O. Miglino, H. H. Lund and D. Nolfi, Evolving Mobile Robots in Simulated and Real Envi-
ronments, Artificial Life 2, pp.417-434, 1995.

[7] D. Keymeulen, M. Iwata, K. Konaka, R. Suzuki, Y. Kuniyoshi and T. Higuchi, Off-line Mode-
free and On-line Model-based Evolution for Tracking Navigation Using Evolvable Hardware,
In Proceedings of the First European Workshop on Evolutionary Robotics, Springer-Verlag,
Paris, 1998.

[8] K. Komoriya, E. Oyama and K. Tani, Planning of Landmark Measurement for the Navigation
of a Mobile Robot, Journal of the Robotics Society of Japan, Vol. 11, No. 4, pp.533-540,
1993 (in Japanese).

[9] D. Floreano, C. Mattiussi, Evolution of Spiking Neural Controllers, In Gomi, T. (ed.): Evo-
lutionary Robotics: From Intelligent Robots to Artificial Life (ER’01), AAI Books, Springer-
Verlag, pp. 38-61, 2001.

[10] K. Ohkura, K, K. Ueda, Adaptation in Dynamic Environment by Using GA with Neutral
Mutations, International Journal of Smart Engineering System Design, 2, pp.17-31, 1999.

[11] Y. Katada, K. Ohkura, K. Ueda, Tuning Genetic Algorithms for Problems Including Neutral
Networks -A More Complex Case: The Terraced NK Problem-, In Proceedings of the 7th
Joint Conference on Information Sciences, pp.1661-1664, 2003.

[12] Y. Katada, K. Ohkura, K. Ueda, An Approach to Evolutionary Robotics Using the Genetic
Algorithm with Variable Mutation Rate Strategy, In Proceedings of The 8th Parallel Problem
Solving from Nature (PPSN VIII), pp.952-961, 2004.

[13] E. Nimwegen,J. Crutchfield, M. Mitchell, Statistical Dynamics of the Royal Road Genetic
Algorithm, Theoretical Computer Science, Vol. 229, No. 1, pp.41-102, 1999


