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Abstract. In recent years, not only ruggedness but also neutrality has
been recognized as an important feature of a fitness landscape for genetic
search. Since the traditional theories based on the schema theory are
not useful for problems including neutrality, new theoretical guidelines
should be developed for effective genetic search. This research direction
has been introduced almost for ten years, but the progress is not very
fast. For instance, only a few methods have been proposed or tested
for measuring neutrality on the problem to be solved. In this paper, we
propose the use of the Nei’s standard genetic distance, which originates
from population genetics, for measuring the neutrality of a landscape.
Several computer simulations are conducted by using a standard genetic
algorithm in order to investigate the validity of the proposed approach.
The terraced NK landscape, which is a popular test function in this field,
is adopted for a test function. The results suggest to us that the Nei’s
genetic distance in natural evolution is a reliable method for measuring
neutrality in artificial evolution after minor modifications.

1 Introduction

Neutrality have attracted much research interest in recent years [1][2]. This fea-
ture, caused by highly redundant mappings from genotype to phenotype, is also
found in natural systems, and has been of particular interest to evolutionary the-
orists and molecular biologists [3]. Neutrality has been found in many real-world
applications of artificial evolution, such as evolution of neural network controllers
in robotics [4], on-chip electronic circuit evolution [5]. Landscapes which include
neutrality have been conceptualized as containing neutral networks. Harvey [6]
first introduced the concept of neutral networks into the GA community. He
defined it as follows: “A neutral network of a fitness landscape is defined as a
set of connected points of equivalent fitness, each representing a separate geno-
type: here connected means that there exists a path of single (neutral) mutations
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Fig. 1. Typical evolutionary dynamics on a fitness landscape featuring neutral net-
works: Instead of being stuck in a local optimum, a population is exploring in the
genotype space during the equilibrium period.

which can traverse the network between any two points on it without affecting
fitness.”

The evolutionary dynamics on neutral networks can be classified into two
kinds of period, i.e., a transient period and an equilibrium period (Fig. 1) [7][8].
During an equilibrium period, a population is located around the dominant phe-
notype in the genotype space maintaining in a cluster, analogously to quasi-
species [9], and moves along the neutral pathway until it finds a portal to a next
higher neutral network (Fig. 1). The discovery of the portal leads to a transient
period which is expected to be very short compared to the equilibrium period.
This evolutionary dynamics is clearly different from the traditional explanations
based on the schema theory.

In the GA community, the majority of fitness landscape descriptions have
based on ruggedness and modality [10–12]. This is because GA practioners cus-
tomarily avoid redundancy in the coding of problems for genetic search. However,
Nimwegen et al. [7] suggested that the building block hypothesis[10][13] does not
hold for systems that mainly show equilibrium periods. This means that the tra-
ditional theories based on the schema theory[10][13] are not useful for problems
including neutrality. If equilibrium periods seem dominative, ruggedness is not
enough to measure the search difficulty. Another measure, i.e., neutrality is re-
quired.

To the best of our knowledge, the Smith’s fitness evolvability portraits [2]
are only the method for measuring neutrality. This is defined as the probability
that the offspring fitness is greater than or equal to the parent fitness. In their
measurement, a certain distinctive characteristic defined to be neutral between
two fitness values must be set by GA practioners. This value has a great influence
on this measure, especially in the case that the fitness is evaluated as a real value
or in a noisy environment. However, it has not been shown which distinctive
characteristic should be considered to be neutral.

According to Kimura’s neutral theory [3] and Ohta’s nearly neutral theory
[14][15], the number of gene substitutions of each genotype increases with the in-
crease of neutrality. In population genetics, there are several statistical methods



for estimating the number of gene substitutions. From the viewpoint of measur-
ing neutrality, the number of gene substitutions could be an index of neutrality.
This idea would be beneficial in artificial evolution because there is no need to
treat any fitness values.

This paper examines whether the Nei’s standard genetic distance is adequate
for measuring neutrality of fitness landscapes. The next section describes the
Nei’s standard genetic distance. Section 3 applies the Nei’s genetic distance to
describe one of tunably neutral landscapes called the Terraced NK landscape
and shows the validity of the Nei’s genetic distance for measuring neutrality.
Section 4 discusses the condition that the Nei’s genetic distance can be used.
Conclusions are given in the last section.

2 The Nei’s Standard Genetic Distance

Genetic distance is a term of population genetics used for estimating gene differ-
ences per locus between populations. Although there are several definitions for
this, the Nei’s standard genetic distance [16] is adopted in this paper.

The Nei’s standard genetic distance is defined as follows. Consider two pop-
ulations, X and Y . Let xik and yik be the frequencies of the k-th alleles (i =
1, · · · , N , k ∈ {1, 2} in the standard GA) in X and Y , respectively. The probabil-
ity of identity of two randomly chosen genes is jxi = x2

i1 + x2
i2 in the population

X, while it is jyi = y2
i1 + y2

i2 in the population Y . The probability of identity
of a gene from X and a gene from Y is jxyi = xi1yi1 + xi2yi2. The normalized
identity of genes between X and Y with respect to a locus is defined as

Ii =
jxyi√

jxi

√
jyi

. (1)

It is equal to 1.0 if the two populations have the same alleles in identical fre-
quencies, and 0.0 if they have no common alleles. The normalized identity of
genes between X and Y with respect to the average in all loci is defined as

I =
JXY√
JX

√
JY

, (2)

where, JX =
∑N

i=1 jxi/N , JY =
∑N

i=1 jyi/N and JXY =
∑N

i=1 jxyi/N . The
genetic distance between X and Y is defined as

D = − loge I, (3)

under the assumption that the mutation rate per locus is sufficiently small. How-
ever, the above definition cannot be applied to the standard GA directly, because
it is assumed that a new allele always appears on a locus when a mutation oc-
curs, while “back mutations [14]” frequently occur in the standard GA, due to
the binary coding scheme. Therefore, the genetic distance between the popula-
tion at the initial generation and the one at the last generation is calculated



as:

Dfinal =
T−1∑

1

Dt,t+1 (4)

where T is the number of the last generation and Dt,t+1 is the genetic distance
between the population in the t-th and the (t + 1)-th generation. The rate of
gene substitution is defined as the genetic distance per generation.

Based on the studies of population genetics, the following hypotheses are
needed:

(1) The number of substitutions increases with the increase of neutrality.
(2) The number of substitutions is largest when random sampling is applied as

a selection method.
(3) The mutation rate per locus is small so that the above two expectations

hold.

The Nei’s genetic distance can be applied as the measure of neutrality in
artificial evolution as long as the above hypotheses hold.

3 Neutrality in a Tunably Neutral NK Landscape

3.1 A Terraced NK Landscape

A terraced NK landscape was employed as the test function in our computer sim-
ulations. This is the tunably neutral landscape proposed by Newman et al. [17].
A terraced NK landscape has three parameters: N , the length of the genotype;
K, the number of epistatic linkages between genes; and w, the contribution of a
locus to the fitness of the entire genotype.

The fitness value is calculated as follows: The fitness contribution of the i-
th locus, wi, is an integer generated randomly in the range 0 ≤ wi < F, i =
1, · · · , N . To calculate the fitness, W , of a genotype, the fitness contribution of
each locus is averaged, and then divided by F − 1, normalizing W to the range
0.0 to 1.0. More formally:

W =
1

N (F − 1)

N∑

i=1

wi. (5)

The neutrality of the landscape can be tuned by changing the value of F . The
neutrality of the landscape is maximized when F = 2, and is effectively non-
existent as F → ∞.

3.2 Simulation Conditions

We applied two genetic algorithms: the standard GA (SGA) and the (random-
sampling, q)-algorithm. The (random-sampling, q)-algorithm employs standard
bit mutation at the rate of q as the genetic operation and random sampling



as a selection method where M offsprings are sampled from M ancestors with
replacements. This model was used to investigate the effect of random sampling
and mutation on the genetic distance and the rate of gene substitution of a
population. This model is approximately equivalent with Kimura’s stochastic
genetic models to study random genetic drift and the expected time of fixation
of a mutant gene [3]. Kimura has suggested that the rate of gene substitution is
largest when the selective advantage of a new mutation over the original allele
is zero except that the new mutation is deleterious in a small population.

Computer simulations were conducted using a population size of 50. The
SGA used standard bit mutation as the genetic operation. For both algorithms,
the per-bit mutation rate, q, was set at 0.008, based on the hypothesis (3) in
Section 2. Crossover was not employed. Tournament selection was adopted for
the SGA. The tournament size was set at 2. Each run lasted 2,000 generations.
We conducted 50 independent runs for each problem under the landscape param-
eters, N = 20, K ∈ {0, 2, 6, 12, 19}, F ∈ {2, 3, 4, 6}. The results were averaged
over 50 runs.

3.3 Simulation Results

In this experiment, the number of substitutions increased approximately linearly
over generations in all runs. Therefore, the rate of substitution is shown by
using the method of least squares on the results of all runs because the rate of
substitution is equivalent to the gradient of the number of substitutions over
generations.

Table 1 shows the rate of substitution for the SGA. Notice first that the rate
of substitution increased with the decrease of F with all Ks. This means that
the rate of substitution increases with the increase of neutrality. This tendency
is consistent with the neutral theory. Second, the rate of substitution decreased
with the increase of K with all F s. This means that not only neutrality but
also ruggedness have an influence on the rate of substitution. This is consistent
with Ohta’s results for NK landscapes with weak selection based on the nearly
neutral theory, where the number of substitutions decreases with the increase of
K [15,18].

The rate of substitution for (random-sampling, q)-algorithm was 0.004576.
Thus, the rate of substitution for (random-sampling, q)-algorithm was always
larger than any others for the SGA with K and F .

Table 1. The rate of substitution for the SGA with q = 0.008

�
��F
K

0 2 6 12 19

2 0.002042 0.000666 0.000220 0.000131 0.000106

3 0.001307 0.000421 0.000173 0.000102 0.000104

4 0.001063 0.000318 0.000130 0.000099 0.000087

6 0.000738 0.000235 0.000128 0.000090 0.000087
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Fig. 2. Relative rate of substitution for the SGA and the (random-sampling, q)-
algorithm with q = 0.008

In order to summarize the results obtained in this experiment, the relative
rate of substitution, γ, for the SGA and the (random-sampling, q)-algorithm was
calculated. This is formulated as follows: γ = α/αrandom, where α is the rate
of substitution for the SGA and αrandom is the one for the (random-sampling,
q)-algorithm. When γ < 1.0, the rate of substitution for the SGA is less than
the one for the (random-sampling, q)-algorithm. When γ > 1.0, the rate of sub-
stitution for the SGA is more than that for the (random-sampling, q)-algorithm.
The results are shown in Fig. 2. We can recognize the tendencies for K and F
more clearly. Thus, the hypothesis (1) and (2) hold when the landscape includes
neutrality.

In real-world problems, the increase of ruggedness of a fitness landscape is
predicted by the decrease in the correlation length [2, 11]. Fig. 3 shows the rela-
tive rate of substitution at each correlation coefficient corresponding to K with
all F s in our results, where the correlation coefficient was calculated as a fitness
correlation between genotypes at Hamming distance 1 [12]. Thus the relative rate
of substitution predicts the increase of neutrality for F s around each correlation
coefficient.
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Fig. 3. Relative rate of substitution as a function of the correlation coefficient
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Fig. 4. Relative rate of substitution for the SGA and the (random-sampling, q)-
algorithm with q = 0.1

4 Discussion

Additional computer simulations were conducted to observe the transition of the
Nei’s genetic distance in the condition of a large mutation rate, which induces
the inconsistency with the hypotheses at Section 2. The simulation settings were
the same as Section 3.2 except that q was set at 0.1 for the two algorithms.
The results are shown in Fig. 4. Surprisingly, γ increased with the increase of
K with all F s. In addition to this, no significant differences were found between
the graphs of different F s.

The rate of substitution for the SGA was higher than that for the (random-
sampling, q)-algorithm when K > 6, because γ > 1.0 with all F s. This would
be caused by the effect of the larger mutation rate than the error threshold[7]
which changes artificial evolution into a random search.

From the above, we confirmed that the Nei’s genetic distance can be used as
long as the mutation rate is sufficiently small compared with the error threshold.

5 Conclusions

In this paper, we have proposed the use of the Nei’s standard genetic distance,
which treats only genotype data, for measuring neutrality of a landscape, and
shown the validity of this approach by applying it to the Terraced NK landscapes.
The characteristic of the rate of substitution estimated by the Nei’s genetic
distance can be summarized as follows:

When the mutation rate per locus is small,
– The number of substitutions is largest when random sampling is applied

with mutation.
– The number of substitutions increases with the increase of neutrality.
– The number of substitutions decreases with the increase of ruggedness where

the landscape includes neutrality.

Our results suggest that the genetic distance can provide a guideline for mea-
suring neutrality and ruggedness. As for the next step, we will investigate how
well our method applies to real-world problems whose fitness landscape includes



neutral networks, such as the evolution of artificial neural networks for robot
control.
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