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Abstract. Neutral networks, which occur in fitness landscapes contain-
ing neighboring points of equal fitness, have attracted much research
interest in recent years. In recent papers [20, 21], we have shown that, in
the case of simple test functions, the mutation rate of a genetic algorithm
is an important factor for improving the speed at which a population
moves along a neutral network. Our results also suggested that the ben-
efits of the variable mutation rate strategy used by the operon-GA [5]
increase as the ruggedness of the landscapes increases. In this work, we
conducted a series of computer simulations with an evolutionary robotics
problem in order to investigate whether our previous results are appli-
cable to this problem domain. Two types of GA were used. One was the
standard GA, where the mutation rate is constant, and the other was the
operon-GA, whose effective mutation rate at each locus changes indepen-
dently according to the history of the genetic search. The evolutionary
dynamics we observed were consistent with those observed in our previ-
ous experiments, confirming that the variable mutation rate strategy is
also beneficial to this problem.

1 Introduction

Selective neutrality has been found in many real-world applications of artificial
evolution, such as the evolution of neural network controllers in robotics [1,
2] and on-chip electronic circuit evolution [3,4]. This characteristic is caused
by highly redundant mappings from genotype to phenotype or from phenotype
to fitness. With these kinds of problems, redundancy is inevitable. Even for
problems where redundancy is largely absent, it may be useful to introduce it. A
number of researchers have been trying to improve the performance of artificial
evolution on more traditional problems by incorporating redundancy in genotype
to phenotype mappings[5–8]. Neutrality is also found in natural systems, and has
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Fig. 1. Typical evolutionary dynamics on a fitness landscape featuring neutral net-
works, which can be classified into transient periods and equilibrium periods.

been of particular interest to evolutionary theorists [9] and molecular biologists
[10,11].

Landscapes which include neutrality have been conceptualized as containing
neutral networks [6, 12, 13]. This concept is central to the majority of research
in this field. Harvey [12] first introduced the concept of neutral networks into
the GA community. His definition is as follows: “A neutral network of a fitness
landscape is defined as a set of connected points of equivalent fitness, each rep-
resenting a separate genotype: here connected means that there exists a path
of single (neutral) mutations which can traverse the network between any two
points on it without affecting fitness.”

Evolutionary dynamics on neutral networks can be classified into transient
periods and equilibrium periods (Fig. 1) [14,15]. During an equilibrium period,
the population is clustered in genotype space around the dominant phenotype,
analogously to quasi-species [16], and moves around until it finds a portal to
a neutral network of higher fitness. The discovery of a portal leads to a tran-
sient period, which is expected to be very short in comparison to an equilibrium
period. It has been shown that there is a clear transition in evolutionary dy-
namics for populations on neutral networks over the mutation rate range. At a
very low mutation rate, the population is maintained in a cluster on the neu-
tral network. As the mutation rate increases, the population gradually loses the
current network. That is, some individuals fall to lower neutral networks. At a
certain critical mutation rate, the whole population will lose the current neutral
network. This mutation rate is called the phenotypic error threshold4 [14, 17, 18].

Generally, the error threshold sets the upper limit for a mutation rate that
will enable efficient search. This implies that if we adopt a constant mutation
rate strategy, we should set a relatively low mutation rate so as to avoid any error
threshold effects during the process. From a practical point of view, however, it
would be efficient to shorten the equilibrium period which dominates the whole
computation (Fig. 1). Additionally, in landscapes which include ruggedness, in-
dividuals can easily get trapped on local optima if there is a low mutation rate
and high selection pressure. It has been demonstrated in a tunably neutral NK
4 These concepts originate from molecular evolution [10, 11]



landscape [17,19] that increasing neutrality does not affect the ruggedness, al-
though it does reduce the number of local optima [13,17, 19]. This means that the
effects of ruggedness must be taken into account even if landscapes include neu-
tral networks. Using a high mutation rate can shorten equilibrium periods and
help a population avoid becoming trapped on local optima. However, as noted
above, using a high mutation rate can be counterproductive because of the ef-
fects of error thresholds. One approach to overcoming these problems would be
to adopt variable mutation rate strategies, which change the effective mutation
rate adaptively during the process of evolution.

Recently, we have investigated the effect of mutation rate and selection pres-
sure on the speed of population movement on very simple neutral networks with
different levels of neutrality [20]. We also examined the performance of GAs
using terraced NK landscapes with different levels of ruggedness and different
selection pressures. [21]. Our results can be summarized as follows:

– For a fixed population size, the speed of a population plotted as a function
of the mutation rate yields a concave curve with an optimal mutation rate
and an error threshold.

– Increasing the selection pressure will improve the speed at which a population
moves on a neutral network.

– The variable mutation rate strategy used by the operon-GA [5] is not only
beneficial with simple test functions but also with complex test functions.
The benefits increase as the ruggedness of the landscapes increases.

We are interested in whether these observations are consistent with more
complex problems. This is because we want to solve complex real-world problems.
This paper investigates how well our previous results apply to the evolution of
artificial neural networks for robot control by comparing a standard GA [22] and
the operon-GA on an evolutionary robotics task using a simulated robot. The
paper is organized as follows. The next section describes the neural networks
adopted in a robot control problem. Section 3 defines the robot control problem
where the evolved neural networks are evaluated. Section 4 gives the results
of our computer simulations. Section 5 discusses the relationship between the
correlation of the landscape and the overall GA performance. Conclusions are
given in the last section.

2 The Neural Controller –Spike Response Model–

The agent’s behavior is controlled by a spike response model network [23], which
is a form of Pulsed Neural Network (PNN). A neuron emits a spike when the total
amount of excitation due to incoming excitatory and inhibitory spikes exceeds
its firing threshold, θ. After firing, the membrane potential of the neuron is
set to a low negative voltage, it then gradually returns to its resting potential;
during this refractory period, a neuron cannot emit a new spike. The function
ηi, accounting for neuronal refractoriness, is given by:

ηi(r) = − exp(− r

τm
)H(r) (1)



Here r = t − t
(f)
i is the difference between the time t and the time of firing t(f)

of neuron i, τm is a membrane time constant and H(r) is the Heaviside step
function which vanishes for r < 0 and gives a value of 1 for r > 0.

The function εij describes the response to postsynaptic spikes: (2).

εij(r) = [exp(−r − ∆ax

τm
)(1 − exp(−r − ∆ax

τs
))]H(r − ∆ax) (2)

where τs is a synaptic time constant, ∆ax is the axonal transmission delay.
The membrane potential of a neuron i at time t is given by:

ui(t) =
∑

t
(f)
i

∈Fi

ηi(t − t
(f)
i ) +

∑

j∈Γi

∑

t
(f)
j

∈Fj

ωijεij(t − t
(f)
j ) (3)

where Fi is the set of firing times in a neuron i. The neuron i may receive the
input from presynaptic neurons j ∈ Γi. The weight ωij is the strength of the
connection from the jth neuron, and scales the amplitude of the response given
in eq.(2).

3 The Task and the Fitness Function

The control task used in this paper was motion pattern discrimination [24], and is
based on a task originally implemented by Beer [25]. The agent must discriminate
between two types of vertically falling object based on the object’s period of
horizontal oscillation; it must catch (i.e., move close to) falling objects that have
a long period whilst avoiding those with a short period (see Fig. 2). An array
of proximity sensors allow the agent to perceive the falling objects. If an object
intersects a proximity sensor, the sensor outputs a value inversely proportional to
the distance between the object and the agent. The agent can move horizontally
along the bottom of the arena. In our experiment, the agent of diameter 30 had
7 proximity sensors of maximum range 220 uniformly distributed over a visual
angle of 45 degrees. The horizontal velocity of the agent was proportional to

Catch? Avoid?

Long Period
[12 Steps]

Catch

Short Period
[4 Steps]

Avoid 

Fig. 2. Experimental setup for the discrimination of the motion patterns. Two kinds
of period used in the discrimination experiments (left) and the agent in the arena with
its array of the proximity sensors (right).



the sum of the opposing horizontal forces produced by a pair of effectors. It has
maximum velocity of 8. Each falling object was circular, with diameter 30, and
dropped from the top of the arena with a vertical velocity of 4, a horizontal
amplitude of 30 and an initial horizontal offset of ±50. An object’s horizontal
velocity was ±10 (12 steps in a period) for a long period and ±30 (4 steps in a
period) for a short period.

The performance measure to be maximized was as follows:

Fitness = 1000
NumTrials∑

i=1

Pi

NumTrials
(4)

where Pi = 1 − di for a long period and Pi = di for a short period, di = 1 when
hdi > 60 and di = hdi/60 when hdi ≤ 60, hdi is the final horizontal distance
between the center of the agent and the object, and NumTrials is the number
of trials for an individual (8 trials for each period).

4 Computer Simulations

4.1 Simulation Conditions

For this experiment, an agent’s controller was a PNN with 7 sensory neurons, 2
fully interconnected motor neurons and Nh fully interconnected hidden neurons,
where Nh ∈ {1, 10}. The network’s connection weights and the firing threshold
for each neuron were genetically encoded and evolved. The total number of
parameters was either 33 (Nh = 1) or 240 (Nh = 10). The parameters were
mapped linearly onto the following ranges: connection weights, ω ∈ [−1.0, 1.0],
and thresholds, θ ∈ [0.0, 3.9]. The parameters of the neurons and synapses (see
section 2) were set as follows: τm = 4, τs = 10, ∆ax = 2 for all neurons and all
synapses in the network following the recommendations given in [26]. Computer
simulations were conducted using populations of size 50. Each individual was
encoded as a binary string with 10 bits for each parameter. Therefore, the total
length of the genotype was either L1 = 330 (Nh = 1) or L10 = 2400 (Nh = 10).
The standard GA (SGA) and the operon-GA (OGA) were employed to evolve
the PNN parameters. The OGA uses standard bit mutation and five additional
genetic operators: connection, division, duplication, deletion and inversion. The
probabilities for genetic operations were set at 0.3 for connection and division, 0.2
for duplication and 0.05 for deletion and inversion, based on our previous results
in [21]. The length of the value list in a locus was 6. The genetic operation for the
SGA was standard bit mutation. For both GAs, the per-bit mutation rate, q, was
set at 1/L (0.003 for L1 and 0.000416 for L10). Crossover was not used for either
GA, following Nimwegen’s suggestion [14]. Tournament selection was adopted.
Elitism5 was optionally applied. The tournament size, s, was set at {2, 6} because
the SGA prefers low selection pressure while the OGA prefers high selection
5 The fittest individual of each generation was passed un-mutated to the next gener-

ation (if several individuals had the highest fitness, one was randomly chosen.)
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Fig. 3. The maximum fitness at each generation for Nh = 1
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Fig. 4. The maximum fitness at each generation for Nh = 10

pressure. A generational model was used. Each run lasted 6,000 generations. We
conducted 10 independent runs for each of the sixteen conditions. All results
were averaged over 10 runs.

4.2 Simulation Results

Fig. 3 shows the maximum fitness at each generation for the SGA and OGA, with
and without elitism, for controllers with Nh = 1. Fig. 3(a) and 3(b) show the
results for the four GA conditions for s = 2 and 6 respectively. For s = 2, fitness
increased faster with the OGA than with the SGA in the early generations.
In the final generation, there was no significant difference between the SGA
and the OGA. For s = 6, the SGA was trapped on local optima, whereas the
OGA continued to find better regions of the search space. In addition, the SGA



performed better without elitism than with it. These results are consistent with
the results obtained using terraced NK landscapes [21]. With respect to final
generation fitnesses, there was no significant difference between the SGA with
s = 2 and the OGA for s = 6. However, a closer examination reveals that during
the process of evolution the OGA with s = 6 performed better than the SGA
with s = 2 and elitism.

Fig. 4 shows the maximum fitness at each generation for the SGA and OGA,
with and without elitism, for s = 2 and 6 with Nh = 10. With Nh = 10,
differences between the SGA and the OGA were much more pronounced than
with Nh = 1. Even for s = 2, fitness increased faster for the OGA than for
the SGA (Fig. 4(a)). This is consistent with the results obtained using simple
neutral networks when the mutation rate is below the optimal mutation rate
[20]. As with Nh = 1, for s = 6, the SGA with elitism was trapped on local
optima (Fig. 4(b)), whereas the OGA continued to find better regions; also as
before, the SGA performed better without elitism than with it. The OGA for
s = 6 also outperformed the SGA for s = 2.

Under all conditions, the OGA performed better than the SGA on this task,
either by achieving higher final fitnesses, or by achieving high fitnesses faster, or
both. This shows that the OGA’s variable mutation rate strategy was beneficial
on this problem.

5 Discussion

The evolutionary dynamics observed in these experiments can be explained in
the same way as in [21].

The evolutionary dynamics that were observed showed phases of neutral evo-
lution, implying that the fitness landscapes include neutral networks. However,
large fluctuations that sometimes cause the best individuals to be lost were not
observed under any of the four GA conditions. That is, there was no influence
of the error threshold at the mutation rate q = 1/L. Therefore, we can assume
that the effective mutation rate of q = 1/L was below the error threshold under
each condition.

The correlation of the landscapes was analyzed in order to investigate overall
GA performance. Fig. 5(a) and 5(b) show the correlation coefficient [27] as a
function of the Hamming distance between parents and offspring for the SGA
with and without elitism, with Nh = 1 and 10 respectively. They suggest high
fitness correlation in both landscapes, with the Nh = 10 landscape being more
highly correlated that the Nh = 1 landscape.

As predicted, with s = 6, the SGA with and without elitism was trapped on
local optima when Nh = 1, due to the low mutation rate and high selection pres-
sure. With s = 6 and Nh = 10, the SGA with elitism was also trapped on local
optima. However, the SGA without elitism for s = 6 and Nh = 10 was not obvi-
ously trapped. Based on the analysis of ruggedness shown in Fig. 5(b), it seems
likely that fitnesses would continue improving if the runs were extended beyond
their final generation. Further computer simulations were therefore conducted
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Fig. 5. The correlation coefficient as a function of the Hamming distance between
parents and offspring for the SGA
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Fig. 6. The maximum fitness over 10,000 generations for the SGA for s = 6 and
Nh = 10

in order to observe the SGA runs over an additional 4,000 generations. Fig. 6
shows the maximum fitness for 10,000 generations of the SGA with Nh = 10.
The SGA without elitism continued to find better regions of the search space.
This indicates that the SGA without elitism can escape from local optima with
this level of ruggedness.

When compared on the same landscapes, the OGA continued to find much
better regions of search space than the SGA. The continued improvement ob-
served with the OGA was due to the online adaptation of mutation rates during
the process of evolution. In addition to this, with the OGA, the effective mu-
tation rate will have been below the error threshold even with low selection
pressure (i.e. when s = 2). This is why the variable mutation rate strategy of
the OGA was a better approach on this problem with both high and low selection
pressure.



6 Conclusions

In this work, we applied the standard GA and the operon-GA to evolution of
artificial neural networks for robot control, and investigated their performance
using different selection pressures. Our results can be summarized as follows:

– This evolutionary robotics problem does show phases of neutral evolution.
– The standard GA with low selection pressure and the operon-GA were able

to continually find better regions of the search space.
– The standard GA can easily get trapped on local optima under conditions

of high selection pressure and a low mutation rate.
– The benefits of the variable mutation rate strategy used by the operon-GA

were more pronounced with a larger genetic search space.

These results are consistent with the results of our previous experiments using
simple neutral networks and terraced NK landscapes.

The fitness landscape of this evolutionary robotics problem is relatively smooth.
Future work will investigate whether these results are applicable to real-world
problems which are expected to have more rugged landscapes.
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