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Abstract— In recent years, not only ruggedness but also
neutrality has been recognized as an important feature of a
fitness landscape for genetic search. As it has been reported that
the evolutionary dynamics on a fitness landscape with neutrality
is clearly different from the canonical explanations, ruggedness
alone might be inadequate describing it. Another measure,
i.e., neutrality is required. In this paper, we proposed the use
of the Nei’s standard genetic distance, which originates from
population genetics, for estimating the degree of neutrality in
fitness landscapes after minor modifications. Several computer
simulations were conducted with an evolutionary robotics prob-
lem in order to investigate the validity of the proposed approach.
The results suggest to us that the Nei’s genetic distance is a
reliable method for estimating the degree of neutrality on real-
world problems.

I. INTRODUCTION

In early works of the theoretical GA community, problem
difficulties for a GA have been discussed in terms of the
geography of a fitness landscape: isolation, deception and
multimodality. Their factors affecting the performance of
the GA to solve optimization problems are still contentious
issues. However, several counterexamples on the latter two
factors were found, showing that they are neither necessary
nor sufficient to make a problem difficult [1][2][3].

Another attempt to characterize difficulty has been done
by measuring the feature of a fitness landscape, epistasis or
ruggedness. Most of the works in this area are based on the
correlation between a parent fitness and the offspring one to
describe a fitness landscape [1][4][5][6][7][8]. Therefore, it
is derived from the average of fitness correlations between
parents and offspring or the fitness distance autocorrelation
function obtained by using a random walk. In the GA
community, the majority of fitness landscape descriptions
have based on ruggedness.

In recent years, the existence of problem domains has been
reported where evolutionary dynamics is clearly different
from the canonical explanations based on the schema theory
and the building block hypothesis [9][10]. Those kinds of
problem, such as the evolution of neural network controllers
in robotics [11][12][13][14] and on-chip electronic circuit
evolution [15][16][17], mainly show equilibrium period, neu-
tral evolution in their evolutionary dynamics. This character-
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istic is caused by highly redundant mappings from genotype
to phenotype or phenotype to fitness. With these kinds of
problems, redundancy is inevitable although it is customary
among GA practioners deliberately to avoid redundancy in
the genetic coding of artificial evolution problems. Therefore,
ruggedness alone is not enough to measure the search diffi-
culty if equilibrium periods seem dominative in the process
of evolution.

To the best of our knowledge, statistical measurements
with respect to neutrality are found only in the references
[16][18]. Vassilev et al., studied the structure of on-chip
electronic circuit evolution landscapes [16]. They proposed
the information analysis of fitness landscapes, which is
defined over a time series obtained by a walk on a land-
scape. Their entropic measure of the time series makes it
possible to confirm the existence of neutrality in a landscape
and which feature, neutrality or ruggedness is dominant in
the landscape. Smith et al., [18] proposed a method for
measuring neutrality in a landscape as one of the fitness
evolvability portraits. This is defined as the probability that
an offspring fitness is equal to the parent fitness. In their
measurement, a certain distinctive difference, ε, between two
fitness values considered to be neutral must be set by GA
practioners, that is, |fx − fy| ≤ ε (fx is a parent fitness
and fy is the offspring one). However, the reference [16]
has reported that Smith’s measure is very sensitive to ε.
Especially in the case that the fitness is evaluated as a real
value or in a noisy environment, a great influence of the
value on the measure of neutrality would be predicted. For
these problems, Smith proposed the use of neutral fitness
band [12] or the significance level for the Student t-test [19]
as the value. However, no significant difference between two
fitness landscapes was detected although introducing such
statistical neutrality [19]. This implies the difficulty to use
fitness data for measuring neutrality.

Population geneticists have been trying to explain the
change of gene frequency in a population. That is, they have
used genotype data for their explanations. Recently, we have
been motivated by this to investigate the characteristics of the
Nei’s standard genetic distance[20], which is one of statistical
methods for estimating gene differences between populations
in population genetics, in artificial evolution [21]. The results
show some consistencies with the neutral theory [22] and the
nearly neutral theory [23][24] in population genetics.

The characteristics of the Nei’s standard genetic distance
can be summarized as follows:



When the mutation rate per locus is sufficiently small,

1) The genetic distance increases approximately linearly
over generations in fitness landscapes with neutrality.

2) The genetic distance increases with the increase of
neutrality.

3) The genetic distance decreases with the increase of
ruggedness in landscapes with neutrality.

4) The genetic distance decreases with the increase of the
population size.

From the viewpoint of measuring neutrality, the charac-
teristics 1) and 2) show the possibility of a genetic distance
as an index of neutrality, while the characteristics 3) shows
the difficulty to apply the genetic distance directly to the
measure of neutrality.

This paper investigates how well the Nei’s genetic distance
applies to estimate the degree of neutrality in fitness land-
scapes. The greatest advantage of our approach is that the
difficulty to use fitness data for measuring neutrality, which
was mentioned above, need not to be taken into account
because it uses genotype data for it. The paper is organized as
follows. The next section describes the Nei’s standard genetic
distance. Section III applies the Nei’s genetic distance to
tunably neutral landscapes and shows the characteristics of
the genetic distance. Section IV shows some guidelines for
estimating the degree of neutrality in a fitness landscape on a
real-world problem as well as investigates the validity of the
proposed approach on a robot control problem. Conclusions
are given in the last section.

II. THE NEI’S STANDARD GENETIC DISTANCE

Genetic distance is a term of population genetics used for
estimating gene differences per locus between populations.
Although there are several definitions for this, the Nei’s
standard genetic distance [20] is adopted in this paper.

The Nei’s standard genetic distance is defined as follows.
Consider two populations, X and Y . Let xik = nik/M and
yik = nik/M be the frequencies of the k-th alleles (i =
1, · · · , N , N , the length of the genotype, k ∈ {1, 2} in a
binary coded GA, nik, the number of the k-th allele, M , the
population size) in X and Y , respectively. The probability of
identity of two randomly chosen genes is jxi = x2

i1 + x2
i2 in

the population X , while it is jyi = y2
i1+y2

i2 in the population
Y . The probability of identity of a gene from X and a gene
from Y is jxyi = xi1yi1 + xi2yi2. The normalized identity
of genes between X and Y with respect to a locus is defined
as

Ii =
jxyi√

jxi

√
jyi

, (1)

where, Ii = 1.0 if the two populations have the same
alleles in identical frequencies, and Ii = 0.0 if they have no
common alleles. The normalized identity of genes between
X and Y with respect to the average in all loci is defined as

I =
JXY√
JX

√
JY

, (2)

where, JX =
∑N

i=1 jxi/N , JY =
∑N

i=1 jyi/N and JXY =∑N
i=1 jxyi/N . The genetic distance between X and Y is

defined as

D = − loge I. (3)

The above definition cannot be applied to the standard GA
directly, because it is assumed that a new allele always
appears on a locus when a mutation occurs, while “back
mutations [23]” frequently occur in the standard GA, due to
the binary coding scheme. Therefore, the genetic distance of
GAs between the population at the initial generation and the
one at the last generation is calculated as:

D(T ) =
T−1∑

t=1

Dt,t+1 (4)

where T is the number of the last generation and Dt,t+1 is
the genetic distance between the population in the t-th and
the (t + 1)-th generation.

III. THE NEI’S STANDARD GENETIC DISTANCE IN

TUNABLY NEUTRAL NK LANDSCAPES

In this section, we apply the standard GA (SGA)[25]
to tunably neutral landscapes and obtain the genotype data
from it. Considering to apply to real-world problems, we
investigate the characteristics of the Nei’s genetic distance
for ruggedness measured by a canonical method.

A. Terraced NK Landscapes

A terraced NK landscapes and an extended one were
employed as test functions in our computer simulations. The
former is the tunably neutral NK landscape (TNK) proposed
by Newman and Engelhardt [26] and the latter is the TNKp
landscape which we extended to increase neutrality of TNK.

A terraced NK landscape has three parameters: N , the
length of the genotype; K, the number of epistatic linkages
between genes; and v, the contribution of a locus to the
fitness of the entire genotype. The fitness value is calculated
as follows: The fitness contribution of the i-th locus, vi,
is an integer generated randomly in the range 0 ≤ vi <
F, i = 1, · · · , N . To calculate the fitness, V , of a genotype,
the fitness contribution of each locus is averaged, and then
divided by F − 1, normalizing V to the range 0.0 to 1.0.
More formally:

V =
1

N(F − 1)

N∑

i=1

vi. (5)

The neutrality of the landscape can be tuned by changing
the value of F . The neutrality of the landscape is maximized
when F = 2, and is effectively non-existent as F → ∞.

TNKp is an extended form of TNK for F = 2 in order to
increase neutrality of TNK. For TNKp, vi in Equation (5) is
set at 0 with the probability, P (0 ≤ P ≤ 1), following the
way to involve neutrality in NKp fitness landscapes [27].



B. Simulation Conditions

Computer simulations were conducted using populations
of size 50 by varying the landscape parameters. We applied
the SGA. The SGA used standard bit mutation as the
genetic operation. The per-bit mutation rate, q, was set at
0.008, based on the assumption in Section I. Crossover
was not employed, following Nimwegen’s suggestion [10].
Tournament selection was adopted. The tournament size was
set at 2 because the SGA generally prefers low selection
pressure. A generational model was used. Each run lasted
2,000 generations. We conducted 50 independent runs for
each problem under the landscape parameters, N = 20,
K ∈ {0, 2, 6, 12, 19}, F ∈ {2, 3, 4}, P ∈ {0.9, 0.99}. The
results were averaged over 50 runs. As mentioned in Section
I, the genetic distance increases approximately linearly over
generations in fitness landscapes with neutrality. Therefore,
the gradient of the genetic distance over generations, α, is
calculated as an index of increase of the genetic distance in
this experiment by using the method of least squares on the
results of all the runs.

C. Simulation Results

1) Measure of Ruggedness: In real-world problems,
ruggedness of a fitness landscape is predicted by the fitness
correlation [5][18]. In this paper, therefore, the Smith’s
measurement [18] is employed for the measure of ruggedness
because its fitness correlation can be expressed as a scalar
value. The average fitness of the offspring solutions, called
the Smith’s Eb, is given by

Eb(k) =

∑
g∈G(k) V (g)

|G(k)| (6)

where, G(k) is the set of offspring from parents with the
fitness k, g is an offspring genotype and V (·) is the fitness
function. Figure 1 show Ebs in TNK for F = 2. It is
found that the gradient, Ėb, decreases with the increase of
K. It has been known that this gradient is independent of
F (neutrality), that it is proportional to the autocorrelation
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Fig. 1. Expected offspring fitness value over all parent fitness values in
TNK for F = 2

function for the mutation operator applied, and that Ėb � 1.0
when K = 0 and Ėb � 0.0 when K = N − 1.

2) Characteristics of the Genetic Distance: Figure 2
shows α at each correlation, Ėb, corresponding to K with all
F s and P s in TNK(p). It is confirmed that α increased with
the increase of Ėb for all F s and P s, and increased with
the decrease of F and the increase of P for all Ėbs. These
are consistent with the results obtained in [21]. As a result, a
set of points (Ėb, α) forms a curve, which increases with the
increase of the correlation when F and P are constant. A set
of curves is also found with different levels of neutrality. This
demonstrates that α would predict the increase of neutrality
combined with the measure of ruggedness.

IV. ESTIMATING THE DEGREE OF NEUTRALITY IN

EVOLUTIONARY ROBOTICS FITNESS LANDSCAPES

A. Guidelines for Estimating the Degree of Neutrality

The procedure for estimating the degree of neutrality in a
fitness landscape on a real-world problem can be summarized
as follows:

i) Confirm the existence of neutrality in a fitness land-
scape on a real-world problem by investigating transi-
tions of the genetic distance over generations.

ii) Calculate a point, (Ėb, α), from runs on the real-world
problem.

iii) Calculate a set of Ėb-α curves in test functions with
different levels of neutrality and ruggedness.

iv) By using a set of Ėb-α curves as baselines, judge
where a point, (Ėb, α), obtained from the real-world
problem locates in the graph of (Ėb, α). Then estimate
indirectly the degree of neutrality on the real-world
problem.

The reason why the procedure iii) and iv) are conducted
is that the genetic distance is affected by both neutrality and
ruggedness as confirmed in Section III. TNK and TNKp
are adopted as test functions for obtaining a set of Ėb-
α curves. The landscape parameters of TNK(p) should be
decided at the procedure iii) for conducting the procedure iv).
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Addition to this, the parameters of the GAs (a mutation rate,
a population size, a tournament size, etc.) on test functions
should be the same as those on a real-world problem due to
the characteristics of the Nei’s standard genetic distance.

B. The Task and the Fitness Function

The control task used in this experiment was motion pat-
tern discrimination [28][29], and is based on a task originally
implemented by Beer [30]. The agent must discriminate
between two types of vertically falling object based on the
object’s period of horizontal oscillation; it must catch (i.e.,
move close to) falling objects that have a long period whilst
avoiding those with a short period (see Fig. 3). An array
of proximity sensors allow the agent to perceive the falling
objects. If an object intersects a proximity sensor, the sensor
outputs a value inversely proportional to the distance between
the object and the agent. The agent can move horizontally
along the bottom of the arena. In our experiment, the agent
of diameter 30 had 7 proximity sensors of maximum range
220 uniformly distributed over a visual angle of 45 degrees.
The horizontal velocity of the agent was proportional to the
sum of the opposing horizontal forces produced by a pair of
effectors. It has maximum velocity of 8. Each falling object
was circular, with diameter 30, and dropped from the top of
the arena with a vertical velocity of 4, a horizontal amplitude
of 30 and an initial horizontal offset of ±50. An object’s
horizontal velocity was ±10 (12 steps in a period) for a long
period and ±30 (4 steps in a period) for a short period.

The performance measure to be maximized was as follows:

Fitness = 1000
NumTrials∑

i=1

Hi

NumTrials
(7)

where Hi = 1 − di for a long period and Hi = di for a
short period, di = 1 when hdi > 60 and di = hdi/60 when
hdi ≤ 60, hdi is the final horizontal distance between the
center of the agent and the object, and NumTrials is the
number of trials for an individual (8 trials for each period).

C. Simulation Conditions

For this experiment, the agent controller was a spike
response model network [31], which is a form of Pulsed

Catch? Avoid?

Long Period
[12 Steps]

Catch

Short Period
[4 Steps]

Avoid 

Fig. 3. Experimental setup for the discrimination of the motion patterns.
Two kinds of period used in the discrimination experiments (left) and the
agent in the arena with its array of the proximity sensors (right).

Neural Network (PNN) with 7 sensory neurons, 2 fully
interconnected motor neurons and Nh fully interconnected
hidden neurons, where Nh ∈ {0, 1, 5, 10, 15} in order to
estimate and compare the features among the fitness land-
scapes with each Nh. The network’s connection weights
and the firing threshold for each neuron were genetically
encoded and evolved. The total number of parameters is
equal to {20, 33, 105, 240, 425} corresponding to each Nh.
The parameters were mapped linearly with the following
ranges: connection weights ω ∈ [−1.0, 1.0], thresholds θ ∈
[0.0, 3.9]. The parameters of the neurons and synapses were
set as follows: τm = 4, τs = 10, ∆ax = 2 for all neurons and
all synapses in the network following the recommendations
given in [32].

Computer simulations were conducted using populations
of size 50. Each individual was encoded as a binary string
with 10 bits for each parameter. Therefore, the total length of
the genotype was L = {200, 330, 1050, 2400, 4250} for each
Nh. The SGA were adopted to evolve PNN parameters. The
genetic operation for the SGA was standard bit mutation.
Based on the assumption of the Nei’s genetic distance in
Section I, two types of mutation rate were set as follows:

a) q = 1/LNh=15, which is constant for each land-
scape, corresponding to 1/L for the longest geno-
type.

b) q = 1/L, following the recommendation in the
evolutionary computation community.

According to the procedures in the previous subsection,
all the parameters of the SGA must be the same among
fitness landscapes to compare the features. Thus, the other
parameters were set as follows. Tournament selection was
adopted. Elitism was applied. The tournament size was set
at 2. Each run lasted 6,000 generations. We conducted 10
independent runs for each landscape.

As the test functions, TNK and TNKp were adopted. A
set of landscape parameters of TNK(p) at the procedure iii)
was decided in the preliminary computer simulations with
the same SGA parameters as those of the PNNs. In this
experiment, they were set at the same values as those of
TNK(p) in Section III. The reason to conduct the procedure
iv) in these conditions is explained as follows: In the case of
a) there are cases in which it is not possible to estimate and
compare the degree of neutrality between fitness landscapes
even if combined with the measure of ruggedness (will be
described in the next subsection), and in the case of b) there
is no theoretical meaning to compare directly the features
of the fitness landscape of the PNNs due to the different
mutation rates.

D. Simulation Results

a) q = 1/LNh=15

Figure 4 shows the genetic distance at each generation for
Nh = 15. The approximately linear increases were observed
in all runs. For other Nhs, the same transition were observed.
From the results obtained in [21], this might indicate the
presence of neutrality in the fitness landscape of the PNN.
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Fig. 4. Genetic distance at each generation for the SGA with q = 1/L
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Thus, the gradient of the genetic distance over generations,
α, is shown by using the method of least squares on the
results of all the runs in the following parts.

Figure 5, 6 and 7 show the features of the fitness landscape
for each Nh. Figure 5 plots the correlation, Ėb, for each Nh.
In this experiment, the correlation increased with the increase
of Nh except of Nh = 15. That is, ruggedness decreased
with the increase of Nh. In Figure 6, α increased with the
increase of Nh. When the fitness landscape for Nh = 1 was
compared with the one for Nh = 0, there was no significant
differences in the correlation but α increased so much. For
another instance, when the fitness landscape for Nh = 15
was compared with the one for Nh = 10, the correlation
decreased but α increased. In these cases, the increase of
neutrality can be estimated based on the results obtained in
[21]. Note that the increase of neutrality cannot be estimated
either when the fitness landscape for Nh = 5 was compared
with the one for Nh = 1 or when the fitness landscape
for Nh = 10 was compared with the one for Nh = 5,
because the increase of α coincided with the increase of the
correlation.

By using the Ėb-α curves obtained in TNK(p), where F

0.00008

0.00010

0.00012

0.00014

0.00016

0 1 5 10 15

α

Num. of hidden neurons (Nh)
Fig. 6. α for each Nh at q = 1/LNh=15

0.0e+00

5.0e-05

1.0e-04

1.5e-04

2.0e-04

 0.7  0.8  0.9  1.0

α

Correlation

NN
P=0.99

P=0.9
F=2

F=3
F=4

Nh=0 Nh=5

Nh=10

Nh=15
Nh=1
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at q = 1/LNh=15

and P are constant for each curve, as baselines, the degree
of neutrality in the landscapes for all Nhs were estimated
indirectly (Figure 7). The points, (Ėb, α), for Nh = 0 and
Nh = 1 locate between the Ėb-α curves for P = 0.99 and
P = 0.9. The point for Nh = 1 is nearer to the curve for
P = 0.99 than the point for Nh = 0. The points for Nh = 5
and Nh = 15 locate on the curve for P = 0.9. The points
for Nh = 10 locates between the the curves for P = 0.9 and
F = 2. Therefore, we confirmed that neutrality increased in
order of Nh = 10 → {5, 15} → 0 → 1.

In the cases of Nh = 0 → 1, 10 → 15, the increases
of neutrality were observed. These are consistent with the
results of the direct comparison between the landscapes
mentioned above. Additionally, the decreases of neutrality
were also observed in the cases of Nh = 1 → 5, 5 → 10
although it was not possible to estimate them by the direct
comparison.

Figure 8 shows the maximum fitness at each generation
for Nh. Except of Nh = 1, the fitness increased faster as
the decrease of Nh, that is, the decrease of the genotypic
search space. The poor performance in the SGA for Nh = 1
cannot be predicted by the comparison with Nh = 0 only on
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the correlation in Figure 5. But it would be predicted by the
increase of neutrality observed in Figure 7 where equilibrium
periods were more dominative in the process of evolution.

b) q = 1/L
Figure 9 plots the correlation, Ėb, for each Nh. As observed
in a), the correlation increased with the increase of Nh except
of Nh = 15. Because of different q among the landscapes,
the degree of neutrality in the landscapes for all Nhs can
be estimated indirectly by using the Ėb-α curves obtained in
TNK(p) (Figure 10). It was observed that neutrality increased
in order of Nh = 10 → 5 → {1, 15} → 0.

Figure 11 shows the maximum fitness at each generation
for Nh. The fitness increased faster as the decrease of Nh,
that is, the decrease of the genotypic search space. This
would be explained as follows; In the process of evolution, no
error threshold effects were observed 1. This implies that the
effective mutation rate at q = 1/L would be below the error
threshold under each condition [29][34][35]. In addition,

1Generally, an error threshold sets the upper limit for a mutation rate that
will enable efficient search [10][27][33].
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Fig. 9. Correlation (Ėb) for each Nh at q = 1/L

ruggedness were not so high in this problem (Figure 9)
Therefore, neutrality of the landscapes would not explicitly
have any influences on the performances of the SGA but the
size of the genotypic search space would have influences on
them.

From the viewpoint of the structure of evolutionary ar-
tificial neural networks, it was confirmed by the proposed
approach that the number of hidden neurons have a great
influence on the features of the fitness landscape of neural
networks.

V. CONCLUSIONS

In this paper, we proposed the use of the Nei’s standard
genetic distance, which originates from population genetics,
for estimating the degree of neutrality in fitness landscapes
after minor modifications. We showed the guidelines to apply
our approach to a real-world problem. Several computer
simulations were conducted with an evolutionary robotics
problem in order to investigate the validity of the proposed
approach. Our results can be summarized as follows:

• The existence of neutrality in an evolutionary robotics
fitness landscape was confirmed by investigating transi-
tions of the genetic distance over generations.

• The proposed method can estimate and compare indi-
rectly the degree of neutrality in the fitness landscapes
by using the features of the fitness landscape of test
functions as baselines.

These results suggest the validity of the proposed ap-
proach. By using this, we might expect to explain evolu-
tionary dynamics on problems where they have not been
explained by canonical fitness landscape descriptions.

This evolutionary robotics problem has redundant map-
pings from phenotype to fitness. Future work will investigate
whether our approach is applicable to real-world problems
which are expected to have redundant mappings from geno-
type to phenotype [36][37][38][39].
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