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Abstract— Open-ended evolution is considered to be caused
by several factors, one of which would be co-evolution. Com-
petitive co-evolution can give rise to the “Red Queen effect”,
where the fitness landscape of each population is continuously
changed by the competing population. Therefore, if such con-
tinuous changes are captured, co-evolutionary progress would
be measured. In this paper, we estimate features of competitive
co-evolutionary fitness landscapes on a predator-prey problem
in computer simulations and investigate the Red Queen effect
on the fitness landscape. Two types of method were proposed to
estimate features,ruggednessand neutrality. One was calculated
based on accumulated data so far at each generation, and the
other was based on accumulated data during a certain period.
The results suggest to us that our method can track the progress
of fitness landscapes on competitive co-evolutionary robotics.

I. I NTRODUCTION

Open-ended evolution is considered to be caused by sev-
eral factors, one of which would be co-evolution [1]. In
competitive co-evolution, “Red Queen hypothesis” has been
discussed where a species must evolve for its existence and it
becomes extinct if it stops evolving. In the simplest scenario
of two competing species, an advantage of one species might
lead to the disadvantage of the other species, then the other
species also responds with counter-adaptive strategies to get
its own advantage, which appear “a co-evolutionary arms
race”.

In competitive co-evolution, the fitness landscapes of com-
peting populations might be continuously changed by such
arms races. These changes could prevent populations from
being stuck on local areas of the landscape [2] as well as
stimulate them to move better regions. Therefore, if such
changes could be captured, co-evolutionary progress would
be measured.

In the Evolutionary Computation community, the ge-
ography of a fitness landscape has been discussed with
respect to problem difficulties. These are conceptual-
ized as isolation, deception, multimodality and flatness.
In recent years, those are measured as the features of
a fitness landscape,ruggedness(epistasis) andneutrality
[3][4][5][6][7][8][9][10][11][12][13]. Ebner et al. [14] in-
vestigated the dynamics of competitive co-evolution by a
simple model where fitness landscapes are deformed by the
existence of other species. Within the limit of our knowledge,
however, there is no literature to investigate competitive co-
evolutionary dynamics with respect to the features of a fitness
landscape.
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In this paper, we propose methods to estimate features of
competitive co-evolutionary fitness landscapes on a predator-
prey problem in computer simulations in order to investigate
the Red Queen effect on the fitness landscape. Pursuit
and evasion have been studied in various fields, behavioral
biology, neuroethology, game theory and embodied cognitive
science. This is straightforward to study competitive co-
evolution. Predator-prey problems in our computer simula-
tions are implemented in the context of evolutionary robotics
where a mobile agent has its own neural controller with
sensory-motor architectures and interacts with the competing
agent and the environment. It has been known that such
evolutionary robotics fitness landscapes include both rugged-
ness and neutrality [10][11][12][13]. In [13], we proposed a
method to estimate the degree of neutrality and ruggedness
in fitness landscapes, then confirmed the validity of the
proposed approach in an evolutionary robotics problem.
However, that was a problem with single species. There-
fore, we need to make some modifications of the proposed
method[13] in order to capture changes of fitness landscapes
for competitive co-evolutionary problems.

The paper is organized as follows. The next section de-
scribes the method to estimate the degree of ruggedness and
neutrality in fitness landscapes, which we proposed in [13],
and then extends it for competitive co-evolution. Section III
describes an experimental setup for predator-prey in a robot
control problem. Section IV gives the results of our computer
simulations. Section V discusses performances of the best
individuals across generations. Conclusions are given in the
last section.

II. M ETHODS FOR MEASUREMENTS OFFEATURES OF

FITNESSLANDSCAPES

In this section, the procedure for estimating features of a
fitness landscape is described. Features to be measured are
ruggedness and neutrality. Ruggedness is estimated based on
the Smith’s measurement [12] and neutrality is based on our
measurement, the Standard Genetic Distance[15][13].

A. Measure of Ruggedness

In real-world problems, ruggedness of a fitness landscape
is predicted by fitness correlation [5][12]. In this paper, the
measurement proposed by Smithet al. [12] was employed
for the measure of ruggedness because fitness correlation can
be expressed as a scalar value in their measurement. In [12],
it has been reported that fitness correlation is expressed by
the gradient of the expected offspring fitness versus parent
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fitness graph. The expected offspring fitness for parent fitness
k is given by

f̄k =

∑
g∈Gk f(g)
|Gk| (1)

where,Gk is the set of offspring from parents with the fitness
k over generations,g is an offspring genotype andf(·) is the
fitness function. It has been also reported in [12][13] that the
gradient,r, increases with the decrease of ruggedness, that
this gradient is independent of neutrality and thatr ≃ 1.0
without any epistatic linkages between genes andr ≃ 0.0
with maximum epistatic linkages.

B. Standard Genetic Distance and its characteristics

Genetic distance is a term of population genetics used for
estimating gene differences per locus between populations.
Although there are several definitions for this, the Nei’s
standard genetic distance[15] is adopted in our method[13].

The Nei’s standard genetic distance is defined as follows.
Consider two populations,X and Y . Let xil = nil/M
and yil = nil/M be the frequencies of thel-th alleles
(i = 1, · · · , N , N , the length of the genotype,l ∈ {1, 2} in
a binary coded GA,nil, the number of thel-th allele,M , the
population size) inX andY , respectively. The probability of
identity of two randomly chosen genes isjxi = x2

i1 + x2
i2 in

the populationX, while it is jyi = y2
i1+y2

i2 in the population
Y . The probability of identity of a gene fromX and a gene
from Y is jxyi = xi1yi1 + xi2yi2. The normalized identity
of genes betweenX andY with respect to a locus is defined
as

Ii =
jxyi√

jxi

√
jyi

, (2)

where, Ii = 1.0 if the two populations have the same
alleles in identical frequencies, andIi = 0.0 if they have no
common alleles. The normalized identity of genes between
X andY with respect to the average in all loci is defined as

I =
JXY√
JX

√
JY

, (3)

where, JX =
∑L

i=1 jxi/L, JY =
∑L

i=1 jyi/L, JXY =∑L
i=1 jxyi/L and L is the number of loci. The genetic

distance between X and Y is defined as

D = − loge I. (4)

The above definition cannot be applied to the GAs directly,
because it is assumed that a new allele always appears on
a locus when a mutation occurs, while “back mutations
[16]” frequently occur in the GAs, due to the binary coding
scheme. Therefore, the genetic distance of GAs between
populations at the initial generation and at the last generation
is calculated as:

D1,tl
=

tl−1∑
t=1

Dt,t+1 (5)

wheretl is the number of the last generation andDt,t+1 is
the genetic distance between the population in thet-th and
the (t + 1)-th generation.

In [17], we investigated the characteristics of the Nei’s
standard genetic distance (equation (5)) in the fitness land-
scapes with ruggedness and neutrality. These characteristics
can be summarized as follows:

When the mutation rate per locus is sufficiently small,

1) The genetic distance increases approximately linearly
over generations in fitness landscapes with neutrality.

2) The genetic distance increases with the increase of
neutrality.

3) The genetic distance decreases with the increase of
ruggedness in landscapes with neutrality.

4) The genetic distance decreases with the increase of the
population size.

Due to the characteristics 1) and 2), the gradient of the
genetic distance over generations,α, can be an index of
the increase of neutrality. Moreover, we need to consider
the effect of ruggedness on the genetic distance due to 3).
Considering these, we proposed a method to estimate the
degree of neutrality in fitness landscapes on a real-world
problem [13]. The next subsection shows the procedure in
details.

C. Procedure for Estimating the Degree of Neutrality

In this paper,r and α which are described in previous
subsection II-A and II-B are calculated by using the method
of least squares on the result of each run (For details, readers
may refer to [13][17]). Thus, the procedure for estimating the
degree of neutrality in a fitness landscape on a real-world
problem can be summarized as follows:

i) Confirm the existence of neutrality in a fitness land-
scape on a real-world problem by investigating transi-
tions of the genetic distance over generations.

ii) Calculate a point,(r, α), from each run on the real-
world problem.

iii) Calculate a set ofr-α curves in test functions with
different levels of ruggedness and neutrality.

iv) By using a set ofr-α curves as a baseline, judge where
a point, (r, α), obtained from the real-world problem
locates in the graph of(r, α). Then estimate indirectly
the degree of neutrality on the real-world problem.

The reason why the step iii) and iv) are conducted is
that the genetic distance is affected by both neutrality and
ruggedness as mentioned in Section II-B. Test functions, the
NKp[18] and NKq[19] fitness landscapes (see the details in
Appendix), are adopted for obtaining a set ofr-α curves.
The landscape parameters of the NKp and the NKq should be
decided at the step iii) for conducting the step iv). Addition to
this, the parameters of the GAs (a mutation rate, a population
size, a tournament size, etc.) for test functions should be
the same as those for a real-world problem due to the
characteristics of the standard genetic distance.

D. Small Modifications for Competitive Co-evolution

The previous subsection described the measurement for
single species. Because they assume a fixed fitness landscape,
only average features of a fitness landscape are calculated
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based on the accumulated data from the initial generation
to the last generation at the end of each run. In order to
measure changing features of competitive co-evolutionary
fitness landscapes, we did two kinds of modification for the
number of generations over which calculations are made in
Equation (1) and (5) as follows;
Metric A ) The first metric is similar to the original one,
where changing features are measured based on the ac-
cumulated data from the initial generation to the current
generation,tc. f̄1,tc

is calculated based on Equation (1) as
follows:

f̄k
1,tc

=

∑
g∈Gk

1,tc
f(g)

|Gk
1,tc

| (6)

where,Gk
1,tc

is the set of offspring from parents with the
fitnessk over tc generations, In the same way,D1,tc

is cal-
culated based on Equation (5) using the following equation:

D1,tc
=

tc−1∑
t=1

Dt,t+1 (7)

Thus, r1,tc
and α1,tc

are calculated by using Equation (6)
and (7), respectively.
Metric B ) In the second metric, features are measured only
based on the accumulated data for certain generations.f̄ts,te

is calculated using the following equation,

f̄k
ts,te

=

∑
g∈Gk

ts,te
f(g)

|Gk
ts,te

| (8)

where,Gk
ts,te

is the set of offspring from parents with the
fitnessk from ts to te generation, andts is the first generation
for the certain generations andte is the last one. In the same
way, Dts,te

is calculated using the following equation:

Dts,te
=

te−1∑
t=ts

Dt,t+1. (9)

Thus,rts,te
andαts,te

are calculated by using Equation (8)
and (9), respectively.

In the remainder of this paper, for simplicity, we occa-
sionally denoter1,tc

or rts,te
by r, and α1,tc

or αts,te
by

α.

III. CONTROL TASK AND FITNESS FORMULA

The control task used in this paper was a predator-prey
problem, and is based on a task originally implemented
by Floreano [2]. Following the setting given in [2], this
problem was implemented in the context of evolutionary
robotics. The simulated environment is shown in Figure 1(a),
where a predator seeks to hit (capture) a prey. Generally,
predators and preys are set belonging to different species
which have different sensors and motors. Following this
setting, two kinds of sensor arrangement were employed, one
(the predator) is equipped with linear while the other (the
prey) is equipped with omni-direction (Figure 1(b)). Both
agents were equipped with18 infrared proximity sensors: the
9 ones for detecting the other agent and the other ones for the

(a) Two species evolved
in a square arena with
walls

Sensor

PredatorPrey

(b) Simulated models of the sensors for
predator and prey robots.

Fig. 1. Experimental setup for a predator-prey problem

walls. The agent’s behavior is controlled by artificial neutral
networks (ANN), which details are described in Section IV.

Employing a mathematical model of a mobile robot,
the displacement of the agent (the position:xm, ym, the
orientation:θm) was computed as follows:

xm+1 = xm +
VR + VL

2
cos θm

ym+1 = ym +
VR + VL

2
sin θm (10)

θm+1 = θm +
VR − VL

2R
,

whereVR andVL are the velocities applied to the right and
left wheel respectively,R is the radius of an agent,2R is the
interval between the wheels. The maximum speed is equally
set for both agents. The system error was not assumed due
to simple analysis.

At the beginning of each trial, the predator and prey were
always positioned on a horizontal line at the four random
orientations in the middle of the environment at a distance
corresponding to half the environment width (Figure 1(a)).
One trial ended either when the predator hits the prey or
when400 steps are performed without the hit. Based on the
fitness function used by [2], the performance measure to be
maximized for the predator,pr, and the prey,py, were as
follows:

Fitnesspr =
NumTrials∑

i=1

1− Stepi/MaxStep

NumTrials
, (11)

Fitnesspy =
NumTrials∑

i=1

Stepi/MaxStep

NumTrials
. (12)

whereNumTrials is the number of trials for an individual
(16 trials for each individual) andMaxStep is set at400.
The fitness function increases as the predator catches the
prey more quickly while the prey escapes longer before being
caught by the predator.

IV. COMPUTER SIMULATIONS

A. Simulation Conditions

In the general settings of competitive co-evolution, an
individual I from generationt is evaluated against repre-
sentatives ofI ’s opponent population from each previous
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generationt − t′: t′ ∈ T , T ⊂ {0, 1, · · · , t} [20]. In
Last Elite Opponent (LEO) evaluation[20], each individual’s
fitness is evaluated only in trials against the best individual
from the previous generation of the opponent population,
T ∈ {1}: we refer to this as BP1. In [2][21][22], each
individual is evaluated against the best competitors of the
ten previous generations,T ∈ {1, 2, · · · , 10}: BP10. For
T ∈ {0}, each individual is evaluated only against an
individual selected randomly from the same generation of
the opponent population: SG. In this paper, we employed
these three evaluations.

In this work, the agent controller was constructed by the
ANN with 18 sensory neurons,2 fully interconnected motor
neurons and3 fully interconnected hidden neurons. The
connection weights among neurons were genetically encoded
and evolved. The total number of parameters is equal to
115. The parameters were mapped linearly with the range,
ω ∈ [−1.0, 1.0]. The output of neurons is given by the
sigmoid function,f(x) = 1/(1 + exp(−x)).

In computer simulations, the simple GA (SGA) [23] were
adopted to evolve ANN parameters as well as calculate the
genetic distance. Each individual was encoded as binary
strings with 10 bits for each parameter. Therefore, the total
length of the genotype isL = 1150. The genetic operation
for the SGA was standard bit mutation following the setting
given in [13]. Based on the assumption of the genetic
distance in Section II-B, the per-bit mutation rate was set
at 1/L. A set of landscape parameters of the NKp and the
NKq for the step iii) in Section II-C was decided in the
preliminary computer simulations. In this experiment, the
following landscape parameters were adopted:N = 20,
K ∈ {0, 1, · · · , 19} for the NKp and NKq.P = 0.99 for
the NKp andF = 2 for the NKq. With these parameters,
the NKp includes a higher degree of neutrality than the
NKq does. According to the procedures in Section II-C,
all the parameters of the SGA must be the same among
fitness landscapes to compare the features. Thus, the other
parameters were set as follows. Tournament selection was
adopted. Elitism was applied. The tournament size was set
at 2. A generational model was used. Each run lasted 5,000
generations. The parameters inMetric A andB were as fol-
lows: tc ∈ {1, 2, · · · , 500}, ts ∈ {1, 1001, 2001, 3001, 4001}
and te = ts + 999. We conducted 10 independent runs.

We did not notice significant differences among these runs
with respect to all the measures and analyses reported here.
Therefore, for clarity of explanation, we give data for a single
run, which will be described below.

B. Simulation Results

Figure 2 shows the maximum fitness at each generation
for each evaluation. Although dominance ofpr againstpy in
the fitness level does not completely correspond to the one
in the behavioral level due to the environmental settings, the
predators always outperformed the preys over generations in
all the runs.

Figure 3 shows ther-α curves obtained in the NKp and the
NKq, whereF andP are constant for each curve. These were
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Fig. 2. Maximum fitness at each generation for each evaluation

used as a baseline when compared to the results obtained in
each run on the predator-prey problem. Figure 4(a), 4(c) and
4(e) showr andα at each generation for each evaluation in
Metric A . Compared to Figure 3, the degree of neutrality in
the landscapes for all evaluations were estimated indirectly.
The points,(r, α), for pr and py in the early generations
locate above the curve forP = 0.99. This means that
their fitness landscapes in the early generations include high
neutrality. During the process of evolution, the points for
pr locate in the highr region, that is, high correlation while
those forpy locate in the lowr region except forpy for BP1.
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Fig. 4. α as a function of the correlation,r, for each generation calculated byMetric A andMetric B
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This means that it was easy for the predator to evolve while
it was difficult for the prey to evolve in these settings. With
respect to the change of the fitness landscape, we can confirm
the transition of the points in the early 1,000 generations.
After that, however, those almost converged at a certain
point. In the first metric (the equation (6)(7)), the amount
of accumulated data becomes larger with the increase of the
generation. In the last generations, the new data obtained in
one generation do not have large effect on the total amount
of data obtained over the generations. Thus, it seems likely
that the transition of the points becomes smaller after the
1,000 generation. These results were completely different
from what we expected in Section I. This shows the difficulty
to confirm ever-changing fitness landscapes byMetric A .

Figure 4(b), 4(d) and 4(f) showr and α for each gener-
ations inMetric B . The points forpr locate in the highr
region while those forpy locate in the relatively lowr region.
These tendencies to locate in those regions were the same as
the results obtained in Metric A. Comparing those features in
the evaluations, those of SG and BP1 locate higher than those
of BP10, that is, the degrees of neutrality for SG and BP1
were larger than the one for BP10. It seems likely that BP10
has the strongest selection pressure in the evaluations. This
was why the fluctuations in fitness for BP10 were smaller
than those for SG and BP1. Moreover, we can confirm the
transition of the points among all the periods inMetric B .

V. D ISCUSSION

In the previous section, we can confirm ever-changing
fitness landscapes over generations by one of the proposed
methods. However, the evolutionary dynamics of the ob-
tained results in Figure 2 show that one speciespy were
overcome by the other speciespr over generations. Therefore,
we need to investigate whether co-evolutionary progress
has generated by a complementary method. Figure 5, 6,
7 show CIAO (Current Individual vs. Ancestral Opponents
[20]) plots for SG, BP1, BP10, respectively, where the
brightest cells represent the highest scores and the darkest
the worst, and each row represents fitness scores of the elite
in one species at the generation against all of their ancestral
opponents. We can confirm some patterns (e.g.pr fare
slightly badly againstpy from the generation1700 to 2000
in Figure 5(a) ,py do well againstpr around the generation
1000 and 3900 in Figure 6(b) andpy do well againstpr
around the generation2000 in Figure 7(b)). In ideal co-
evolutionary progress, where there is continuous progressin
both populations, a CIAO plot would show specific patterns:
the darker (low-score) cells towards the diagonal edge while
the lighter (high-score) cells towards the left-hand edge [20].
In Figure 5, 6 and 7, we cannot find any such patterns.
These results mean that an ever-changing fitness landscape is
a necessary condition for ideal competitive co-evolutionary
progress,open-ended evolution, but it is not a sufficient one.

VI. CONCLUSIONS

In this paper, we proposed methods to estimate features of
competitive co-evolutionary fitness landscapes on a predator-

prey problem in computer simulations in order to investigate
the Red Queen effect on the fitness landscape. Our results
can be summarized as follows:

• In the metric calculated based on the accumulated data
from the initial generation to the current one, transition
of the features in the fitness landscape almost converged
after the early generations. Thus, we can not confirm
ever-changing fitness landscapes in this metric.

• In the metric calculated based on the accumulated data
for certain generations, we confirm the transition of the
features over generations.

From these results, we can confirm ever-changing fitness
landscapes over generations by the proposed method. On
the other hand, there was no continuous progress in both
populations for the CIAO evaluations. Future work will
investigate which GA should be applied to this problem
according to the features of the fitness landscapes obtainedin
this paper and which transition pattern of features of fitness
landscapes should appear in ideal co-evolutionary progress.

APPENDIX

The NKp and NKq fitness landscapes are the tunably
neutral NK landscapes, which are extended forms of Kauff-
man’s NK fitness landscape[4]. The former was proposed
by Barnett [18] and the latter proposed by Newman and
Engelhardt [19].

A. NKp Fitness Landscape

The NKp fitness landscape has three parameters:N , the
length of the genotype;K, the number of epistatic linkages
between genes; andP , the parameter to tune the degree of
neutrality. The fitness value is calculated as follows: The
fitness contribution of thei-th locus,vi, is an real value gen-
erated randomly in the range0.0 ≤ vi ≤ 1.0, i = 1, · · · , N
based on its allele and the alleles ofK other loci. At the same
time, vi is set at0.0 with the probability,P (0.0 ≤ P ≤ 1.0)
for involving neutrality in the landscapes. To calculate the
fitness,V , of a genotype, the fitness contribution of each
locus is averaged.

V =
1
N

N∑
i=1

vi. (13)

The degree of ruggedness of the landscape can be tuned by
changing the value ofK. The ruggedness of the landscape
is maximized whenK = N − 1, and is minimized when
K = 0. Also, the degree of neutrality of the landscape can
be tuned by changing the value ofP . The neutrality of the
landscape is maximized whenP = 1.0, and is minimized
whenP = 0.0.

B. NKq Fitness Landscape

The NKq fitness landscape also has three parameters:
N , K, which are the same as those of the NKp andF ,
the parameter to tune the degree of neutrality. The fitness
contribution of thei-th locus, vi, is an integer generated
randomly in the range0 ≤ vi < F, i = 1, · · · , N based
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top in steps of10, prey generations0 to 5000 run left
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(b) py: prey generations0 to 5000 run bottom to top
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to right in steps of10.

Fig. 5. Current individual vs. ancestral opponents for SG.
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(a) pr: predator generations0 to 5000 run bottom to
top in steps of10, prey generations0 to 5000 run left
to right in steps of10.
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(b) py: prey generations0 to 5000 run bottom to top
in steps of10, predator generations0 to 5000 run left
to right in steps of10.

Fig. 6. Current individual vs. ancestral opponents for BP1
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on its allele and the alleles ofK other loci. To calculate
the fitness,V , of a genotype, the fitness contribution of each
locus is averaged, and then divided byF − 1, normalizing
V to the range0.0 to 1.0. More formally:

V =
1

N(F − 1)

N∑
i=1

vi. (14)

The neutrality of the landscape can be tuned by changing
the value ofF . The neutrality of the landscape is maximized
whenF = 2, and is effectively non-existent asF →∞.
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