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Tracking the Red Queen Effect by Estimating Features of
Competitive Co-Evolutionary Fitness Landscapes
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Abstract— Open-ended evolution is considered to be caused In this paper, we propose methods to estimate features of
by several factors, one of which would be co-evolution. Com- competitive co-evolutionary fitness landscapes on a predator-
petitive co-evolution can give rise to the “Red Queen effect”, ey hroblem in computer simulations in order to investigate
where the fitness landscape of each population is continuously . .
changed by the competing population. Therefore, if such con- the Red _Queen effect on _the _fltnes_s Ian_dscape. Pu_rsun
tinuous Changes are Captured’ Co_evo|utionary progress would and evasion have been studied in various fleldS, behavioral
be measured. In this paper, we estimate features of competitive biology, neuroethology, game theory and embodied cognitive
co-evolutionary fitness landscapes on a predator-prey problem science. This is straightforward to study competitive co-
in computer simulations and investigate the Red Queen effect evolution. Predator-prey problems in our computer simula-

on the fithess landscape. Two types of method were proposed to fi imol ted in th text of luti boti
estimate featuresruggednessnd neutrality. One was calculated Ions are impiemented in the context or evolutionary robotics

based on accumulated data so far at each generation, and the Wwhere a mobile agent has its own neural controller with
other was based on accumulated data during a certain period. sensory-motor architectures and interacts with the competing

The results suggest to us that our method can track the progress agent and the environment. It has been known that such
of fitness landscapes on competitive co-evolutionary robotics. evolutionary robotics fitness landscapes include both rugged-
|. INTRODUCTION ness and neutrality [10][11][12][13]. In [13], we proposed a

Open-ended evolution is considered to be caused by sdpethod to estimate the degree of neutrality and ruggedness
eral factors, one of which would be co-evolution [1]. Inin fitness landscapes, then confirmed the validity of the

competitive co-evolution, “Red Queen hypothesis” has pbedyoposed approach in an evolu_tiongry robotic; problem.
discussed where a species must evolve for its existence anfiffwever, that was a problem with single species. There-

becomes extinct if it stops evolving. In the simplest scenari?"® We need to make some modifications of the proposed

of two competing species, an advantage of one species mi gthod[13] in order to capture changes of fitness landscapes
competitive co-evolutionary problems.

lead to the disadvantage of the other species, then the other - : .
species also responds with counter-adaptive strategies to gef "€ paper is organized as follows. The next section de-
its own advantage, which appear “a co-evolutionary armicribes the method to estimate the degree of ruggedness and
race”. neutrality in fitness landscapes, which we proposed in [13],

In competitive co-evolution, the fitness landscapes of conftnd then extends it for competitive co-evolution. Section 111
peting populations might be continuously changed by suddescribes an experimental sgtup for predator-prey in a robot
arms races. These changes could prevent populations fr@RﬂtrO| _problem. Section IV gives the results of our computer
being stuck on local areas of the landscape [2] as well Slmulations. Section V discusses performances of the best
stimulate them to move better regions. Therefore, if sudindividuals across generations. Conclusions are given in the
changes could be captured, co-evolutionary progress wouf$t section.
be measured.

In the Evolutionary Computation community, the ge- !l METHODS FOR MEASUREMENTS OFFEATURES OF
ography of a fitness landscape has been discussed with FITNESSLANDSCAPES

respect to problem difficulties. These are conceptual- | this section, the procedure for estimating features of a
ized as isolation, deception, multimodality and flatness.  finess landscape is described. Features to be measured are

In recent years, those are measured as the features gfqedness and neutrality. Ruggedness is estimated based on
a fitness landscapauggedness(epistasis) andneutrality  he gmith's measurement [12] and neutrality is based on our

[31[41[5][6][7][8][9][10][11][12][13]. Ebner et al. [14] in-  measurement, the Standard Genetic Distance[15][13].
vestigated the dynamics of competitive co-evolution by a

simple model where fitpess Ign_dscap(_as are deformed by tRe Measure of Ruggedness
existence of other species. Within the limit of our knowledge, ]
however, there is no literature to investigate competitive co- /N réal-world problems, ruggedness of a fitness landscape

evolutionary dynamics with respect to the features of a fitneds Predicted by fitness correlation [S][12]. In this paper, the
landscape. measurement proposed by Sméhal. [12] was employed

for the measure of ruggedness because fitness correlation can
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fitness graph. The expected offspring fitness for parentsitne In [17], we investigated the characteristics of the Nei's
k is given by standard genetic distance (equation (5)) in the fithess- land

ko deak f(9) 1) Scapes with ruggedness and neutrality. These charaierist
7= |G¥| (@) can be summarized as follows:
where,G* is the set of offspring from parents with the fitness When the mu'.tatloln rate p_er locus is sufﬁmgntly Sm?"’
k: over generations; is an offspring genotype ang{.) is the 1) The genetic .dlsta.nce' increases approxmately Imegrly
fitness function. It has been also reported in [12][13] that t over generations in fitness landscapes with neutrality.
gradient,r, increases with the decrease of ruggedness, that?) The genetic distance increases with the increase of
this gradient is independent of neutrality and that 1.0 neutrality. _ _
without any epistatic linkages between genes ang 0.0 3) The genetlc.d|stance decre:_ases W|th_the increase of
with maximum epistatic linkages. ruggedness in landscapes with neutrality.
o . o 4) The genetic distance decreases with the increase of the
B. Standard Genetic Distance and its characteristics population size.

Genetic distance is a term of population genetics used for pye to the characteristics 1) and 2), the gradient of the
estimating gene differences per locus between populationfenetic distance over generations, can be an index of
Although there are several definitions for this, the Nei'she increase of neutrality. Moreover, we need to consider
standard genetic distance[15] is adopted in our method[13he effect of ruggedness on the genetic distance due to 3).

The Nei's standard genetic distance is defined as followgonsidering these, we proposed a method to estimate the
Consider two populationsX and Y. Let z;; = nu/M  degree of neutrality in fitness landscapes on a real-world
and y; = na/M be the frequencies of théth alleles proplem [13]. The next subsection shows the procedure in
(¢=1,---,N, N, the length of the genotypé,c {1,2} in  {etails.

a binary coded GAg;;, the number of thé-th allele, M, the

population size) inX andY’, respectively. The probability of C. Procedure for Estimating the Degree of Neutrality
identity of two randomly chosen genesjis = =}, + 7, in In this paper,r and a which are described in previous
the populationX, while itis j,; = y3; +y3, in the population  supsection I1-A and 11-B are calculated by using the method
Y. The probability of identity of a gene fronX and a gene of least squares on the result of each run (For details, reade
from Y is juyi = zaya + zi2yi2. The normalized identity may refer to [13][17]). Thus, the procedure for estimatine t

of genes betweeX andY” with respect to a locus is defined degree of neutrality in a fitness landscape on a real-world

as . problem can be summarized as follows:
i = 7\F\/177 2 i) Confirm the existence of neutrality in a fitness land-
_ v scape on a real-world problem by investigating transi-
where, /; = 1.0 if the two populations have the same tions of the genetic distance over generations.
alleles in identical frequencies, ard= 0.0 if they have no jj) calculate a point,(r, ), from each run on the real-

common alleles. The normalized identity of genes between  \yorid problem.
X andY with respect to the average in all loci is defined as jijy calculate a set ofr-a curves in test functions with

different levels of ruggedness and neutrality.

I= %, ) iv) By using a set of--« curves as a baseline, judge where
XVY a point, (r, o), obtained from the real-world problem
where, Jx = % jui/L, Jy = N1 g/l Jxy = locates in the graph dfr, ). Then estimate indirectly
Zlejzyi/L and L is the number of loci. The genetic the degree of neutrality on the real-world problem.
distance between X and Y is defined as The reason why the step iii) and iv) are conducted is
D= —log,I. (4) that the genetic distance is affected by both neutrality and

ruggedness as mentioned in Section II-B. Test functiores, th
The above definition cannot be applled to the GAs dlrectl)NKp[:LS] and NKq[_‘]_g] fithess |andscapes (See the details in
because it is assumed that a new allele always appears Qpendix), are adopted for obtaining a setsef: curves.
a locus when a mutation occurs, while “back mutationghe landscape parameters of the NKp and the NKq should be
[16]" frequently occur in the GAs, due to the binary codingdecided at the step iii) for conducting the step iv). Additto
scheme. Therefore, the genetic distance of GAs betwegi]s, the parameters of the GAs (a mutation rate, a populatio
populations at the initial generation and at the last geiwera sjze, a tournament size, etc.) for test functions should be

is calculated as: the same as those for a real-world problem due to the
ti—1 characteristics of the standard genetic distance.
Disy =Y Dis (5) e N _
=1 D. Small Madifications for Competitive Co-evolution
wheret; is the number of the last generation abg;,; is The previous subsection described the measurement for
the genetic distance between the population inttie and single species. Because they assume a fixed fithess landscape
the (¢ 4+ 1)-th generation. only average features of a fitness landscape are calculated
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based on the accumulated data from the initial generatior
to the last generation at the end of each run. In order tg
measure changing features of competitive co-evolutionary  FPrey Predator
fitness landscapes, we did two kinds of modification for the| (79 @
number of generations over which calculations are made in
Equation (1) and (5) as follows;

Metric A) The first metric is similar to the original one,
where changing features are measured based on the ac-

cumulated data from the initial generation to the current (a) Two species evolved  (b) Simulated models of the sensors for
generationt,. f1,, is calculated based on Equation (1) as & Sduare arena with  predator and prey robots.

follows:

Predator
e

- degftC f(g) Fig. 1. Experimental setup for a predator-prey problem

F, =T et 7 (6)
G%, |

where, G7,_is the set of offspring from parents with theyais. The agent's behavior is controlled by artificial mebit
fitnessk overi. generations, In the same wa¥, ;. is cal-  networks (ANN), which details are described in Section IV.
culated based on Equation (5) using the following equation: Employing a mathematical model of a mobile robot,

te—1 the displacement of the agent (the positiafy,, y., the
Dy, = Z Dy 441 (7) orientation:f,,) was computed as follows:
t=1 Ve + Vg
Thus, 1, and ay ;. are calculated by using Equation (6) Tmtl = Tt 2 €08 Orm
and (7), respectively. VR+VL .
Metric B) In the second metric, features are measured only Ymt1 = Ym o sIn O (10)
based on the accumulated data for certain generatfons. 0 _ o VR VL
is calculated using the following equation, e " 2R
Socar . fl9) whereVy andV, are the velocities applied to the right and
frF, = 9¢ tkf (8) left wheel respectively? is the radius of an agert R is the
o G e interval between the wheels. The maximum speed is equally

set for both agents. The system error was not assumed due
to simple analysis.

At the beginning of each trial, the predator and prey were
always positioned on a horizontal line at the four random
orientations in the middle of the environment at a distance

te—1 corresponding to half the environment width (Figure 1(a)).
Diy. =Y Diiia. (9)  One trial ended either when the predator hits the prey or
t=t when 400 steps are performed without the hit. Based on the
Thus,r, ¢+, anday, ;. are calculated by using Equation (8)fitness function used by [2], the performance measure to be

where,G,’fs’tp is the set of offspring from parents with the
fitnessk from ¢, to ¢, generation, and, is the first generation
for the certain generations amgdis the last one. In the same
way, Dy, ;. is calculated using the following equation:

and (9), respectively. maximized for the predatopr, and the preypy, were as
In the remainder of this paper, for simplicity, we occafollows:
sionally denotery;, or ry ., by r, and oy, Or oy, s, by . NumTrials | _ Step;/MazStep
a. Fitness,, = ; NumTrials , (11)
IIl. CONTROL TASK AND FITNESS FORMULA Nu7n;rials
. Step; /MaxStep
The control task used in this paper was a predator-prey Fitnessp, = Z “NumTrials (12)

problem, and is based on a task originally implemented i=1

by Floreano [2]. Following the setting given in [2], thiswhere NumTrials is the number of trials for an individual
problem was implemented in the context of evolutionaryl6 trials for each individual) and\/axStep is set at400.
robotics. The simulated environment is shown in Figure,1(aJhe fitness function increases as the predator catches the
where a predator seeks to hit (capture) a prey. Generallyrey more quickly while the prey escapes longer before being
predators and preys are set belonging to different speciegught by the predator.

WhI.Ch have @fferent sensors and motors. Following this IV. COMPUTER SIMULATIONS

setting, two kinds of sensor arrangement were employed, one ) N
(the predator) is equipped with linear while the other (thé\ Simulation Conditions

prey) is equipped with omni-direction (Figure 1(b)). Both In the general settings of competitive co-evolution, an
agents were equipped will® infrared proximity sensors: the individual I from generationt is evaluated against repre-
9 ones for detecting the other agent and the other ones for thentatives ofl’s opponent population from each previous
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generationt — ¢': t' € T, T < {0,1,---,t} [20]. In
Last Elite Opponent (LEO) evaluation[20], each individsial
fithess is evaluated only in trials against the best indizidu
from the previous generation of the opponent population,
T € {1}: we refer to this as BP1. In [2][21][22], each
individual is evaluated against the best competitors of the
ten previous generationd, € {1,2,---,10}: BP10. For
T e {0}, each individual is evaluated only against an
individual selected randomly from the same generation of
the opponent population: SG. In this paper, we employed ]
these three evaluations. 0 1000 2000 3000 4000 5000
In this work, the agent controller was constructed by the Generation
ANN with 18 sensory neurong, fully interconnected motor (a) SG
neurons and3 fully interconnected hidden neurons. The
connection weights among neurons were genetically encoded 1.0
and evolved. The total number of parameters is equal to
115. The parameters were mapped linearly with the range, 0.8
w € [-1.0,1.0]. The output of neurons is given by the " .
sigmoid function,f(z) = 1/(1 + exp(—x)). 0.6 K 1
In computer simulations, the simple GA (SGA) [23] were i |
adopted to evolve ANN parameters as well as calculate the 0.4 %, ’ il ]
genetic distance. Each individual was encoded as binary 02 - WW ) il Lid o Ml
strings with 10 bits for each parameter. Therefore, thd tota
length of the genotype i& = 1150. The genetic operation 0.0 ! ! !
for the SGA was standard bit mutation following the setting 0 1000 2000 3000 4000 5000
given in [13]. Based on the assumption of the genetic Generation
distance in Section II-B, the per-bit mutation rate was set (b) BP1
at1/L. A set of landscape parameters of the NKp and the
NKg for the step iii) in Section 1I-C was decided in the 1.0
preliminary computer simulations. In this experiment, the
following landscape parameters were adoptadd: = 20, 0.8 p¥
K € {0,1,---,19} for the NKp and NKg.P = 0.99 for
the NKp andF' = 2 for the NKqg. With these parameters,
the NKp includes a higher degree of neutrality than the
NKq does. According to the procedures in Section II-C,
all the parameters of the SGA must be the same among 0.2
fithess landscapes to compare the features. Thus, the other
parameters were set as follows. Tournament selection was 0.0 ' ' ' '
adopted. Elitism was applied. The tournament size was set 0 1000 2000 3000 4000 5000
at 2. A generational model was used. Each run lasted 5,000 Generation
generations. The parametershitetric A andB were as fol- (c) BP10
lows: t. € {1,2,---,500}, t; € {1,1001, 2001, 3001,4001}
andt. = t, + 999. We conducted 10 independent runs.
We did not notice significant differences among these runs
with respect to all the measures and analyses reported here.
Therefore, for clarity of explanation, we give data for aghn

Fitness

Fitness

0.6

Fitness

04

o “J‘
wkwmmewuw“}MMmWMMuW¢uw&mLma~M

Fig. 2. Maximum fitness at each generation for each evaluation

run, which will be described below. used as a baseline when compared to the results obtained in
] ) each run on the predator-prey problem. Figure 4(a), 4(c) and
B. Simulation Results 4(e) showr and« at each generation for each evaluation in

Figure 2 shows the maximum fitness at each generatidvietric A. Compared to Figure 3, the degree of neutrality in
for each evaluation. Although dominancemfagainstpyin  the landscapes for all evaluations were estimated indjrect
the fitness level does not completely correspond to the offde points,(r, ), for pr and py in the early generations
in the behavioral level due to the environmental settinigs, t locate above the curve foP = 0.99. This means that
predators always outperformed the preys over generationstheir fithess landscapes in the early generations inclugle hi
all the runs. neutrality. During the process of evolution, the points for

Figure 3 shows the-a curves obtained in the NKp and the pr locate in the high- region, that is, high correlation while
NKq, whereF' and P are constant for each curve. These wer¢hose forpy locate in the lowr region except fopy for BP1.
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Fig. 4. « as a function of the correlatiom, for each generation calculated Metric A and Metric B
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This means that it was easy for the predator to evolve whilgrey problem in computer simulations in order to investigat

it was difficult for the prey to evolve in these settings. Withthe Red Queen effect on the fitness landscape. Our results

respect to the change of the fitness landscape, we can confiten be summarized as follows:

the transition of the points in the early 1,000 generations. , |n the metric calculated based on the accumulated data

After that, however, those almost converged at a certain  from the initial generation to the current one, transition

point. In the first metric (the equation (6)(7)), the amount  of the features in the fitness landscape almost converged

of accumulated data becomes larger with the increase of the after the early generations. Thus, we can not confirm

generation. In the last generations, the new data obtamed i ever-changing fithess |andscapes in this metric.

one generation do not have large effect on the total amount, |n the metric calculated based on the accumulated data

of data obtained over the generations. Thus, it seems likely for certain generations, we confirm the transition of the

that the transition of the points becomes smaller after the  features over generations.

1,000 generation. These results were completely differentFrom these results, we can confirm ever-changing fitness

from what we expected in Section . This shows the diﬁic“m{andscapes over generations by the proposed method. On

to confirm ever-changing fitness landscapesMstric A. 0 other hand, there was no continuous progress in both
Figure 4(b), 4(d) and 4(f) show and« for each gener- o0 ations for the CIAO evaluations. Future work wil

ations in Metrlc B. The points forpr Ioce_lte in the h'Qh'" investigate which GA should be applied to this problem

region while those fopy locate in the relatively low region. according to the features of the fitness landscapes obtained

These tendencies to locate in those regions were the Sam&ds aner and which transition pattern of features of fénes

the results pbtained in Metric A. Comparing thpse featunes ilandscapes should appear in ideal co-evolutionary pregres
the evaluations, those of SG and BP1 locate higher than those

of BP10, that is, the degrees of neutrality for SG and BP1 APPENDIX

were larger than the one for BP10. It seems likely that BP10 1 NKp and NKq fitness landscapes are the tunably
has the strongest selection pressure in the evaluations. Theral NK landscapes, which are extended forms of Kauff-
was why the fluctuations in fitness for BP10 were smallef,5n's NK fitness landscape[4]. The former was proposed

than those for SG and BP1. Moreover, we can confirm thg, garnett [18] and the latter proposed by Newman and
transition of the points among all the periodshtetric B. Engelhardt [19].

V. Discussion A. NKp Fitness Landscape

In the previous section, we can confirm ever-changing
fithess landscapes over generations by one of the proposg
methods. However, the evolutionary dynamics of the

he NKp fitness landscape has three parametisthe
gth of the genotypek’, the number of epistatic linkages
Obc')etween genes; angt, the parameter to tune the degree of

tained resgltshm Frl]gure 2 show that one speq)r%swefre neutrality. The fitness value is calculated as follows: The
overcome Dy the other speciesover generations. Therefore, ¢ o.qq contribution of the-th locus,v;, is an real value gen-

we need to investigate whether co-evolutionary Progressiad randomly in the range0 < v; < 1.0, i = 1,--- , N
has generated by a complementary method. Figure 5, (0,50 on its allele and the allelesisfother loci. At the same
7 show CIAO (Current Individual vs. Ancgstral Opponentsﬁme,vi is set a.0 with the probability,P (0.0 < P < 1.0)
[20]) plots for SG, BP1, BP10, respectively, where thg, i qlving neutrality in the landscapes. To calculate th

brightest cells represent the highest scores and the dar ess,V, of a genotype, the fitness contribution of each
the worst, and each row represents fithess scores of the e|ggus is averaged

in one species at the generation against all of their aradestr
opponents. We can confirm some patterns (gug.fare 1 Y

slightly badly againspy from the generatiori 700 to 2000 V= N Z”i' (13)

in Figure 5(a) ,py do well againsipr around the generation i=1

1000 and 3900 in Figure 6(b) andpy do well againstpr The degree of ruggedness of the landscape can be tuned by
around the generatio@000 in Figure 7(b)). In ideal co- changing the value ok. The ruggedness of the landscape
evolutionary progress, where there is continuous progressis maximized whenX = N — 1, and is minimized when
both populations, a CIAO plot would show specific patternsi’ = 0. Also, the degree of neutrality of the landscape can
the darker (low-score) cells towards the diagonal edgeevhibe tuned by changing the value & The neutrality of the

the lighter (high-score) cells towards the left-hand ed.[ landscape is maximized whefRt = 1.0, and is minimized

In Figure 5, 6 and 7, we cannot find any such patternsvhen P = 0.0.

These results mean that an ever-changing fitness Iands::apgi
a necessary condition for ideal competitive co-evolutigna —°

progressppen-ended evolutiomut it is not a sufficient one.  The NKg fitness landscape also has three parameters:
N, K, which are the same as those of the NKp akid

NKq Fitness Landscape

VI. CONCLUSIONS the parameter to tune the degree of neutrality. The fitness
In this paper, we proposed methods to estimate featuresagntribution of thei-th locus, v;, is an integer generated
competitive co-evolutionary fitness landscapes on a poedatrandomly in the rang® < v; < F, i = 1,--- , N based
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Fig. 5. Current individual vs. ancestral opponents for SG.
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Fig. 6. Current individual vs. ancestral opponents for BP1
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Fig. 7. Current individual vs. ancestral opponents for BP10
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on its allele and the alleles ok other loci. To calculate [21] D. Floreano and S. Nolfi, “Adaptive Behavior in Competifizp-
the fithess), of a genotype, the fitness contribution of each

locus is averaged, and then divided By— 1, normalizing

V' to the range).0 to 1.0. More formally:

The neutrality of the landscape can be tuned by changing

1 N
V= m;v (14)

the value ofF'. The neutrality of the landscape is maximized
when F' = 2, and is effectively non-existent &8 — oo.

(1]

(2]

(3]

(4]
(5]

(6]

(7]
(8]
&l
(10]

(11]

(12]

(13]

(14]

(15]
(16]

(17]

(18]

(29]

(20]
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