
Evolutionary Dynamics of GAs in a Simple Model with
Dynamical Environment and Neutrality

Yoshiaki Katada1

1Setsunan University, Osaka 572-8508, JAPAN
katada @ ele.setsunan.ac.jp

Abstract

Biological organisms have various mechanisms of coping
with the dynamical environments in which they live. Re-
cent papers in computational biology show that individuals
reside in deferent regions of neutral networks according to
environmental variation. This work investigated evolutionary
dynamics of GAs in dynamical environments with neutrality
using a simple model. The evolutionary dynamics observed
were consistent with those observed in the experiments of bi-
ological evolution, confirming that the genotype distributions
change depending on the rates of environmental variation as
well as mutation.

Introduction
The Neutral theory (Kimura, 1983) was developed by Motoo
Kimura in the 1960s. Neutrality is caused by highly redun-
dant mappings from genotype to phenotype or from pheno-
type to fitness. Based on this, it was reported that biological
organisms make good use of genetic mechanisms which do
not appear in phenotype to adapt to environmental variations
on the evolutionary time scale.

The effects of neutrality has been discussed so much in
the EC community especially since Harvey introduced the
concept of neutral networks (Harvey and Thompson, 1996).
These researches can be classified into two types as fol-
lows. The former researches are based on redundant map-
pings from phenotype to fitness, where neutral networks
are included in a problem itself. Examples would be the
evolution of neural network controllers in robotics (Harvey,
1997; Smith et al., 2001) and on-chip electronic circuit evo-
lution (Thompson, 1996; Vassilev et al., 2000). In these re-
searches, evolutionary dynamics are investigated (Barnett,
1997; Newman and Engelhardt, 1998; van Nimwegen et al.,
1999; Katada et al., 2004) or the degree of neutrality in fit-
ness landscapes is estimated (Smith et al., 2002; Katada and
Ohkura, 2006). The latter based on redundant mappings
from genotype to phenotype, where redundancy, that is, neu-
trality has been intentionally incorporated by EC researchers
for problems where redundancy is largely absent to improve
the performance of artificial evolution (Ohkura and Ueda,

1999; Ebner et al., 2001; Knowles and Watson, 2002; Roth-
lauf and Goldberg, 2003).

To the best of my knowledge, in the former type of re-
search, neither evolutionary dynamics nor useful genetic
operators indynamical environmenthas been investigated.
Independently of neutrality, representations of polyploid
model in dynamical environment have been investigated
where useful genes in previous environments are preserved
in some kind of memories (Branke, 2001). Apparently, the
feature of polyploidy is a redundant genetic material, thatis,
redundant mappings from genotype to phenotype. However,
it seems likely that there is no research that investigate this
from the view point of neutrality.

GP, whose evolved programs include many introns and
functionally redundant parts, would be classified into the
former research. That is why some GP researchers have
claimed the importance of neutrality in recent years (Yu and
Miller, 2006; Miller, 2009; Vanneschi, 2009).

Recent papers in computational biology show that indi-
viduals reside in deferent regions of neutral networks ac-
cording to environmental variation. Meyers et al. (2005)
analyzed evolution in a periodically changing environment
using a simple model and a codon model where a locus
has several alleles and some of them are functionally equal,
and reported as follows: When environmental variations are
rare, most individuals are located in the center of the neu-
tral network with the highest fitness value in each environ-
ment preparing for detrimental mutation (Fig. 1(a)). This
phenomenon is calledgenetic robustness. When the rates
of environmental variation are intermediate, most individu-
als are located in the edge of the neutral network in order
to obtain a new phenotype which can adapt to an alternat-
ing environment with a few mutations (Fig. 1(b)). This is
calledgenetic potential. When the rates of environmental
variation are high, they are settled in a phenotype with an
intermediate fitness value in both environments (Fig. 1(c)).
This would mean that they have tolerances and adaptivity
for both environments but would never go to extremes. This
is calledorganismal flexibility.

Based on these knowledges, Yu (2007) investigated evolu-
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Figure 1: Distribution of individuals due to environmentalvariation

tionary dynamics of the GP in a boolean parity problem un-
der environmental variations. It was reported that when the
variation rate is high, the length of a program tree became
long, that is, the effective mutation rate per individual be-
came high, and when the variation rate is low, the length be-
came short, that is, the effective mutation rate per individual
became low. Yu (2007) claimed that when the variation rate
becomes high, individuals of the GP tend to be located in
the edge of the neutral network because the effective muta-
tion rate per individual becomes high and individuals easily
change their phenotype. However, we have trouble defining
a neutral network on GPs due to its representation. There-
fore, it is difficult to discuss directly the consistency of the
obtained results in the GP to the computational biology be-
cause we need the concept of location on a neutral network
for them.

Based on these results, the question arises as to whether
we can get the same kind of dynamics of GAs in dynam-
ical environments with neutrality because neutral networks
have been found in GAs with highly redundant mappings
from phenotype to fitness. In the case of GAs with redun-
dant mappings from genotype to phenotype (including poly-
ploidy), we would get the same kind of results on the “GPs”
mentioned above because it would be difficult for the GAs
to devise a neutral network1 and effective mutation rates of

1It is possible to define a neutral network in GAs with redundant

them are variable.
This paper focuses on the former case, where GAs with

redundant mappings from phenotype to fitness (more pre-
cisely, genotype to fitness) that can form neutral networks
and investigates evolutionary dynamics of them in a simple
model by varying the rates of environmental variation and
the mutation rate. The paper is organized as follows. The
next section describes a neutral network in a mathematical
form. Section III describes a simple model of dynamical
environments with neutrality where evolutionary dynamics
of GAs is investigated. Section IV gives the results of our
computer simulations. Section V discusses the consistencies
with the results obtained in computational biology. Conclu-
sions are given in the last section.

A Formal Definition of a Neutral Network
Katada and Ohkura (2009) defined a neutral network in a
mathematical formula. The details are as follows;

In this study, it is assumed that genotypes are represented
as binary strings and the length of them is fixed. Thus, the
genetic distance between two different genotypes (xg, yg ∈
Φg, xg 6= yg, Φg: the set of genotypes determined by the
length of the genotype,l) is described by the Hamming dis-

mappings from genotype to phenotype (See the next section) but
difficult to make neutral networks emerge from genotype space in
which neutrality is intentionally incorporated as mentioned earlier.



tance between them,H(xg , yg). Thus, min H(xg, yg) is
the smallest unit of mutation. For binary representations,
min H(xg , yg) = 1.

Based on the above consideration, I describe a neutral
network caused by redundant mappings from genotype to
phenotype in a mathematical form. At first, two individ-
uals, xg and zg, are connected,xg ∼ zg, if there exists
{xg

i }
n
i=0 ⊂ Φg, s.t.

1. xg = x
g
0, zg = xg

n,

2. fg(x
g
i ) = fg(x

g),

3. H(xg
i , x

g
i+1

) = 1,

wherefg is the mapping from genotype to phenotype,fg :
Φg → Φp, and assumed to be surjective and not injective.
Φp is defined as the set of phenotypes.

Thus, a neutral network of a genotypezg is

Φ
′

g(z
g) = {xg ∈ Φg|x

g ∼ zg}. (1)

We can extend this definition to redundant mappings from
phenotype to fitness.
Two individuals,xg andzg, are connected,xg ∼ zg, if there
exists{xg

i }
n
i=0 ⊂ Φg, s.t.

1. xg = x
g
0
, zg = xg

n,

2. (fp ◦ fg)(x
g
i ) = (fp ◦ fg)(x

g),

3. H(xg
i , x

g
i+1

) = 1,

wherefp is the mapping from phenotype to fitness,fp :
Φp → Φf , and assumed to be surjective and not injective.
Φf is defined as the set of fitness values. Addition to this
assumption, there would be two cases onfg, which is ei-
ther bijective, or surjective and not injective. In both cases,
however,fp ◦ fg is surjective and not injective only iffp

is surjective and not injective. Thus, a neutral network of a
genotypezg is described in the both cases as follows:

Φ∗

g(z
g) = {xg ∈ Φg|x

g ∼ zg}. (2)

These may seem to be cumbersome at first. But this ele-
gant definition allows us to understand clearly a setting for
computational experiments in the following sections.

Simple Model with Dynamical Environment
and Neutrality

In this study, computer simulations were conducted in order
to compare evolutionary dynamics of GAs with those ob-
served in the experiments of biological evolution (Meyers
et al., 2005). For performing simple analysis, the length of
a string is set at4. According to the setting given in the ref-
erence (Meyers et al., 2005), a set of genotypes is defined

Table 1: Set of genotype

Genotype (gi) ID (i) Nickname
1011 0 NN1-c
1111 1 NN1-e1
1101 2 NN1-e2
1001 3 NN1-e3
1010 4 NN1-e4
0011 5 NN1-e5
1110 6 INV-1
1000 7 INV-2
0111 8 INV-3
0001 9 INV-4
0100 10 NN2-c
0110 11 NN2-e1
0010 12 NN2-e2
0000 13 NN2-e3
0101 14 NN2-e4
1100 15 NN2-e5
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Figure 2: Space of genotype

as Table 1 and Fig.2. The fitness function is also defined as
follows:

wA(gi) =











1 + s (0 ≤ i ≤ 5)

1 + ks (6 ≤ i ≤ 9)

1 (10 ≤ i ≤ 15)

(3)

wB(gi) =











1 (0 ≤ i ≤ 5)

1 + ks (6 ≤ i ≤ 9)

1 + s (10 ≤ i ≤ 15),

(4)

wherewA andwB are fitness functions for environmentsEA

andEB, respectively.s andk (s > 0, 0 ≤ k ≤ 1) are the pa-
rameters to adjust the highest and intermediate fitness values
given to certain genotypes in each environment, respectively.
These parameters were set as follows:s = 1, k = 0.5 fol-
lowing the recommendations given in (Meyers et al., 2005).

In this function, a fitness value is assigned to a genotype
directly so no phenotype is defined. Thus, it is considered
that fg is bijective as mentioned in the previous section.
Thenfp ◦ fg is investigated. According to the definition of
a neutral network (Eq.(2)), the genotypes withi = 0, · · · , 5



and those withi = 10, · · · , 15 form a neutral network in
both environments,EA andEB, respectively. These neutral
networks show the highest fitness value and lowest fitness
value in Eqs. (3) and (4), respectively. In each neutral net-
work, a genotype which does not mutate out of its neutral
network with1 bit is considered to be located at the center
of its neutral network (NN1-c and NN2-c in Table 1) while a
genotype which does mutate out of its neutral network with
1 bit is considered to be located on the edge of its neutral net-
work (NN1-e and NN2-e in Table 1). For this setting, each
neutral network has only one genotype which is located at
the center of it. The other genotypes (i = 6, · · · , 9) show
the intermediate fitness value but do not form any neutral
networks.

Computer Simulation
In this computer simulations, the GA (Goldberg, 1989) were
adopted to evolve individuals in both the environments,EA

andEB , mentioned in the previous section. The length of
the genotype is4 as also mentioned in the previous section.
The population size was set at10 according to the setting in
(Yu, 2007). In this study, computer simulations were con-
ducted in order to investigate evolutionary dynamics of GAs
in a simple model by varying the rates of environmental vari-
ation and the mutation rate. Thus, the genetic operations for
the GA were standard bit mutation and fitness proportionate
reproduction. The per-bit mutation rate,q, was set as fol-
lows: q ∈ {0.025, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5}. Each
run lasted 2,000 generations. The initial environment was
set atEA. The environment was alternately switched ev-
ery λ generations as follows:EA → EB → EA → · · · .
For each run,λ was set between1 and 1000 as follows:
λ ∈ {1, 2, · · · , 20, 30, · · · , 100, 200, · · · , 1000}. 50 inde-
pendent runs were conducted for each parameter. All results
were averaged over50 runs.

Fig. 3 shows the ratio of the individuals with the high-
est fitness value,f = 1 + s, the intermediate value,f =
1 + ks, and the lowest value,f = 1 with q = 0.025 and
λ = {2, 10, 100} 2. For eachλ, a population adapted to a
new environment to produce the individuals with the highest
fitness value. However, not all individuals converged to the
highest fitness value.

The distribution of the individuals were dependent on
λ. For short variable periods (e.g.λ = 2 in Fig. 3(a)),
more than the half of individuals never had the highest fit-
ness value and the individuals with the intermediate fitness
value were dominant (approximately 45-50 %). This is be-
cause environmental variation was so rapid that there was
not enough time for the individuals to adapt to each environ-
ment. This might be considered that evolution supported the
individuals which can adapt faster to rapid environmental

2I plot only the first100 generations forλ = 2, 10 and the first
400 generations forλ = 100 because the similar patterns were
repeatedly observed after the generations.
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Figure 3: Individual distributions at each generation (q =
0.025)

variations, that is, the individuals which can mutate easily
to the one with the highest fitness value. Such individuals
with the intermediate fitness value would be considered to
beorganismal flexibilityas mentioned earlier.

For longer variable periods (e.g.λ = 10 in Fig. 3(b)),
the number of the individuals with the highest fitness value
increased while the number of the ones with the intermediate
fitness value decreased. For even longer variable periods
(e.g. λ = 100 in Fig. 3(c)), there was enough time for the
individuals to adapt to each environment and the individuals
with the highest fitness value became dominant. In Fig. 3,
we can not find “where” the individuals are located in the
neutral network with the highest fitness. The more details
can be found in Figs. 4 and 5.
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(d) q = 0.05, EB
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Figure 4: Individual distributions over variable periods for EA andEB (0.025 ≤ q ≤ 0.2)
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Figure 5: Individual distributions over variable periods for EA andEB (0.25 ≤ q ≤ 0.5)



Figs. 4 and 5 show the ratios of the genotypes overλs
for eachq. Here, the ratio of a genotype was calculated by
dividing the sum of the values just before generations when
the environment was switched with the number of switching
environments and the number of runs. The bold line shows
the ratio of the genotype which is located at the center of
its neutral network and the thin line shows the one of the
genotype which is located on the edge of its neutral network.
The horizontal axis is based on a logarithmic scale.

Over the mutation rate range0.025 ≤ q ≤ 0.1 (Fig. 4(a)-
4(f)), for long variable periods, the ratio of the genotype
which was located at the center of the neutral network with
the highest fitness value was larger than the ones of the
other genotypes in both environments. The genotypes which
were located on the edge of the neutral network attained the
second-largest rate. For shorter variable periods, the ratios
of the genotypes which were located on the edge of the neu-
tral network were larger than the ones of the other geno-
types. Among them, the ratios were different due to their
own locations on the edge. Thus, the ratios of them which
are adjacent to not only the genotypes with the intermediate
fitness value but also the ones with the lowest fitness value
were larger. The variable period range in which this phe-
nomenon appears decreased with the increase ofq. For even
shorter variable periods (approximately1 ≤ λ ≤ 3), the ra-
tio of the genotype with the intermediate fitness value was
largest. For these shortest variable periods, the same result
was obtained in Fig. 3(a).

Over the mutation rate range0.2 ≤ q ≤ 0.4 (Fig. 4(g)-
4(h), Fig. 5(a)-5(f)), for long variable periods, the ratios of
the genotypes which were located at the center of the neutral
network and on the edge of it were large in this order. How-
ever, these values were not beyond0.1. For even shorter
variable periods, the ratios of the genotypes with the lowest
fitness value were a few larger than or equal to the ones with
the highest and intermediate fitness value.

For q = 0.5 (Fig. 5(g)-5(h)), there was no significant dif-
ference between the genotypes, which were distributed ran-
domly.

Discussion
In the earlier section, the loosely defined phenomena,ge-
netic robustness, genetic potentialandorganismal flexibility,
were cited. In order to discuss the results obtained in the pre-
vious section, those are more accurately defined as follows:
genetic robustness: the state where the ratio of the genotype
which is located at the center of the neutral network with
the highest fitness value is largest in the environment,EA or
EB. genetic potential: the state where the ratio of the geno-
type which is located on the edge of the neutral network is
largest in each environment.organismal flexibility: the state
where the ratio of the genotype with the intermediate fitness
value is largest.

According to these definitions, we can find such phase

transitions as organismal flexibility→ genetic potential→
genetic robustness forq ≤ 0.1, and organismal flexibility
→ genetic robustness for0.2 ≤ q ≤ 0.4 in Figs. 4 and
5 with the increase of the variable period. Meyers et al.
(2005) described that we can findgenetic potentialin a
much wider variable period range when the mutation rate de-
creases because it takes more time to reach the state,genetic
robustness. This is consistent with the results in Figs. 4(a)-
4(f) in which we can findgenetic potentialin the ranges,
6 ≤ λ ≤ 20 for q = 0.025, 5 ≤ λ ≤ 10 for q = 0.05 and,
3 ≤ λ ≤ 5 for q = 0.1. Meyers et al. did not mentioned
organismal flexibilityfor the high mutation rates. For the re-
sults obtained in this study, we can not find anyorganismal
flexibility when the mutation rate was high. This would be
considered to be affected by theerror thresholdon the muta-
tion rate (Kauffman, 1995); As the mutation rate increases,
the population gradually loses the current individuals. At
a certain critical mutation rate, the individuals become dis-
tributed randomly.

Meyers et al. (2005) also claimed that the mutation rate
per locus does not need to be variable if the phenotypical
mutation rate or the effective mutation rate per genotype is
variable as opposed to the argument that the variable muta-
tion rate per locus is important for adaptation to environmen-
tal variations. This argument would be explained as follows.
When the mutation rate per locus is low, individuals must
change their phenotypes (or obtain the higher fitness value)
as soon as possible in order to adapt to environmental vari-
ation. Thus, the individuals which are located on the edge
of the neutral network are supported. When the mutation
rate per locus is high, individuals can change quickly their
phenotypes even though they are located at the center of the
neutral network. Therefore, the dominance of the individ-
uals which are located on the edge of the neutral network
becomes invisible at such a mutation rate.

Conclusions
This study investigated evolutionary dynamics of GAs in a
simple model by varying the rates of environmental variation
and the mutation rate. The results can be summarized as
follows:

• Two or three phase transitions were observed over the
variable period range. Especially when the mutation rate
is low, the results were consistent with the results obtained
in computational biology.

• For long variable periods, the frequency of the genotype
which was located at the center of the neutral network
with the highest fitness value was largest in the popula-
tion.

• For shorter variable periods, the frequency of the geno-
type which was located on the edge of the neutral network
was largest.



• For even shorter variable periods, the frequency of the
genotype with the intermediate fitness value was largest.

In this study, four-bit binary strings were used to provide
simple explanatory examples. Additionally, a small popula-
tion size and an alternating environment were set. Further
computer simulations will be conducted in order to inves-
tigate whether these observations are consistent with more
complex settings (Yang et al., 2007). Another future direc-
tion would be an analytical approach due to the simplicity of
the model.
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