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Abstract This paper proposes to use evolutionary com-
putations to determine the parameters of probabilistic
finite state machine controllers for swarm robots. The

robots are evolved to perform an aggregation task. This
problem was formulated as an optimization problem
and solved by the PSO. Several computer simulations

were conducted to investigate the validity of the pro-
posed method. The results obtained in this paper show
to us that the proposed method is useful for the ag-

gregation problem and the best evolved controllers are
feasible as well as interpretable. This would be trans-
ferable to real swarm robots problems.

Keywords Evolutionary Swarm Robotics · Aggrega-
tion · Probabilistic Finite State Machine

1 INTRODUCTION

Swarm Robotics (SR) [1,2] have attracted much re-
search interest in recent years. Generally, the tasks in
SR are difficult or inefficient for a single robot to cope

with. Thus, SR and multi-robot systems overlap each
other. Şahin [3] enumerated several criteria1 for distin-
guishing swarm robotics as follows:

– autonomy: Each robot should be physically embod-
ied and situated.

– redundancy: Minimum group size accepted as swarms
is 10 to 20.
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1 Şahin [3] claimed that these criteria should be used as a
measure of the degree of SR in a particular study.

– scalability: SR system should be able to operate un-
der a wide range of group sizes.

– simplicity: Each robot should employ cheap design,

that is, the structure of a robot would be simple and
the cost would be cheap.

– homogeneity: SR system should be composed of ho-

mogeneous individuals. This enhances the above 2nd
and 3rd criterion.

Following the last criterion, homogeneous controllers
for individuals are desirable for SR systems. Addition-
ally, this approach does not assume the existence of an

explicit leader in swarm robots due to the above crite-
ria. This results in that a collective behavior emerges
from the local interactions among robots and between

the robots and the environment. Therefore, individuals
in SR systems are required to show various behaviors
through those interactions although the individuals are

homogeneous.
Following the taxonomies proposed by Brambilla[2],

we have the most common design methods to develop

swarm robotics systems: behavior-based design and au-
tomatic design. In behavior-based design methods, there
are further three categories: probabilistic finite state

machine design method, virtual physics-based design
method and others. On behavior-based design methods,
such swarm robotics systems are developed by hand

of the designer until the desired collective behavior is
obtained. Such design for collective behavior requires
more effort than that for single robot behavior does be-

cause the interactions are so complex among robots and
between the robots and the environment.

In automatic design methods, there are two cate-

gories: reinforcement learning and evolutionary robotics.
In reinforcement learning (RL), an agent aims at build-
ing value functions in the process of learning while get-

ting rewards from the environment. The optimality is
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guaranteed based on Markovian decision process, e.g.,

for Q-learning[4]. The existence of other robots may vio-
late such an assumption. From the viewpoint of a search
problem, RL is considered as a single point search. The

ability to search the optimal solution is not so high.

In evolutionary robotics (ER)[5], evolutionary com-
putation (EC) is generally applied to design artificial

neural networks (ANNs) for robot control. In the case
of SR [1], controllers are commonly designed for all the
robots or a controller is individually designed for each

robot in the context of cooperative coevolution. The
best evolved neural controller may show good perfor-
mance on robot control tasks in simulated environment.

However, such controllers suffer from the gap between
simulated and real environment when the controllers
are transferred to real environment[6–10]. This is due to

uncertainty derived from real environment: noise, com-
plexity and nonlinear dynamics of ANNs. When we ad-
just the parameters of ANNs due to such uncertainty,

we find it difficult to interpret the collective behavior
emerged from the best evolved neural controller.

In order to overcome these problems, we propose to
use probabilistic finite state machines instead of a neu-
ral controller on swarm robotics tasks in the context

of ER. That is, we apply evolutionary computations
to design a probabilistic finite state machine for swarm
robot control. Such automatic design of probabilistic fi-

nite state machines would drastically decrease the effort
for the design of collective behavior of swarm robots.

The paper is organized as follows. The next sec-

tion describes an EC, particle swarm optimization ap-
plied to determine the parameters of probabilistic finite
state machines. Section 3 describes probabilistic finite

state machines adopted in a swarm robots control prob-
lem. Section 4 defines the swarm robot control problem,
aggregation[11–13], where the probabilistic finite state

machines designed by the PSO are evaluated. Section
5 gives the results of our computer simulations. Sec-
tion 6 studies scalability of the obtained probabilistic

finite state machines. Conclusions are given in the last
section.

2 Particle Swarm Optimization (PSO)

Kennedy and Eberhart [14] introduced particle swarm

optimization (PSO) that was based on social behavior
of fish schooling or bird flocking. The PSOs have been
applied to various fields so far due to the search perfor-

mance and the simplicity of their algorithms.

The optimization problems solved by the PSOs in

this paper are formulated as follows:

min
x

f(x), (1)

where x = (x1, x2, · · · , xL)
T ∈ ℜL.

In the PSOs, a solution in the search space is called,
“particle”. All the particles in a population have their
own positions and velocities. At each iteration, parti-

cles are updated. The update method of positions and
velocities in the PSO is as follows:

vk+1
ij = w · vkij + c1 · rand() · (pbestij − xk

ij)

+c2 · rand() · (gbestj − xk
ij), (2)

xk+1
ij = xk

ij + vk+1
ij , (3)

where rand() is a random number between [0, 1], w,

c1 and c2 are weight factors for the terms. xk
ij is the

j-th variable in the position vector of the i-th particle
at iteration k, vkij is the j-th variable in the velocity

vector of the i-th particle. pbestij is the j-th variable in
the best position visited so far by the i-th particle and
gbestj is the j-th variable in the best position visited

so far by all the particles. Each particle is evaluated by
the objective function f(·) to be optimized.

3 probabilistic finite state machine (PFSM)

3.1 Definition of the PFSM

There are many literatures in swarm robotics employing
a controller to be considered as a class of finite state ma-
chines with probabilistic transitions. Brambilla[2] clas-

sified those controllers as probabilistic finite state ma-
chines (PFSMs). There are several variants of the PF-
SMs employed in SR.

In the PFSMs employed in this study, we set several
states for an individual robot. Let S = {S1, S2, · · · , Sm}
be a finite set of m states. Actions in each state may

correspond to a module[15], a primitive of the domain
ontology[16] or a basic behavior[12]. A state transits
to the next state with a probability (Fig. 1). We can

describe those probabilities as a state transition prob-
ability matrix. This is defined as follows:

P = {pij ∈ ℜ | 0 ≤ pij ≤ 1,
m∑
j=1

pij = 1, (4)

i, j ∈ {1, 2, · · · ,m}},

where P ∈ ℜm×m is a matrix in which each element pij
is the transition probability from state i to state j.

3.2 Formulation as an optimization problem

In the proposed method, the elements of a state transi-

tion probability matrix P are optimized as the design
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Fig. 1 State transition diagram of the PFSM

variables in an optimization problem by the PSO. The
optimization problem is formulated as follows:

min f(pij), (5)

subject to 0 ≤ pij ≤ 1, i, j = 1, 2, · · · ,m, (6)
m∑
j=1

pij = 1, i = 1, 2, · · · ,m. (7)

According to Eq. (4), the number of design variables is

L = m×m. In the process of the PSO, the variables of
the initial particles x0s are generated in the range [0, 1].
According to Eqs. (2) and (3) for k > 0, xks would

violate the constraints, Eqs. (6) or (7). Thus, we must
consider these two constraints in order not to leave xk

unfeasible.

These constraints can be replaced with the following

constraints.

0 ≤ pij , (8)

pij ≤ 1 ∩
m∑
j=1

pij = 1, i, j = 1, 2, · · · ,m. (9)

In order for pij to satisfy Eq. (8), we apply mirroring

to pij as follows:

p′ij =

{
−pij : if pij < 0
pij : otherwise.

(10)

p′ij is kept in the design variables for next update. After
that, to satisfy Eq. (9), we normalize p′ij as follows:

p′′ij =
p′ij∑m
j=1 p

′
ij

. (11)

p′′ij is used only for evaluations of the objective function

and is not kept in the design variables for next update.

4 Swarm robot control problem and the

objective formula

Swarm robot control problem in this paper is set to be

aggregation[11] where robots aggregate to an arbitrary
position as closely as possible from their initial posi-
tions. Aggregation is considered to be a building block

for applications so that an aggregation task is often
used as a case study [12][13].

In this paper, two performance measures were em-

ployed according to the reference[13]: dispersion metric
and cluster metric. The dispersion metric to be mini-
mized in this paper is as follows:

f =
1

4r2

N∑
i=1

||p(t)
i − p(t)||2, (12)

where r is the radius of a robot, N is the number of

robots, p
(t)
i is the position of the i-th robot in environ-

ment at time t, p(t) is the center of the positions of all
the robots. In two dimensional case, the minimum value

of f for each number of robots is given geometrically in
[17].

The cluster metric is as follows:

c =
number of robots in the largest cluster at time t

N
,(13)

where a cluster is defined as a maximal connected sub-
graph, where two robots are adjacent if the distance

between the centers of them is less than 4r.
The above two metrics are evaluated when t is the

final time step in a trial.

5 Computer Simulation

5.1 Setting of computer simulations

5.1.1 Simulated swarm robot and environment

According to the work using the swarm mobile robots

[18], the setting of computer simulations was as follows.
Differential wheeled robots (Fig. 2) were used in this ex-
periment. The robot’s diameter (D) and height are 0.17

[m] and 0.075 [m], respectively. The robot is equipped
with four infrared distance sensors located at the front
of the body for measuring the distance to other robots

and walls (Fig. 3 (right)), four light sensors located at
the center for detecting other robots’ light source (Fig.
3 (left)) and an omni-directional light source located

at the center. The light source is always on. The max-
imum detection range of the infrared sensor is 0.3 [m].
The maximum detection range of the light sensor is R

[m], which has directional characteristics (Fig. 4). The
light sensor outputs the following value:

Ih =

{
cos θh · (R− dh)/(R−D/2) (dh ≤ R)
0 (dh > R)

(14)
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Fig. 2 Setup for swarm mobile robots

Fig. 3 Sensor configurations: a triangle shows a sensor for
light sources, a rectangle shows a distance sensor for robots
and walls and a red line shows the sensor direction.
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Fig. 4 Relative sensitivity of the light sensor: a red line shows
the light sensor direction, a green curve shows directional
characteristics and a yellow circle shows a light source.

Is =
∑
h∈H

Ih (15)

where dh is the distance from the light sensor to the
center of the h-th light source, θh is a relative angle
from the light sensor direction to the h-th light source

(Fig. 4) and H is the number of light sources.

The simulated environment is a square arena with
walls (Fig. 5). The length of the wall was set to 10 [m].
A series of computer simulations have been conducted

varying the number of robots2 No ∈ {10, 20} and the

2 No denotes the number of robots when the PSO was ap-
plied to design the PFSM.

Fig. 5 Set up for computer simulation: Initially, swarm
robots are always placed at the center.

light sensor range R ∈ {1.0, 1.5, 2.0, . . . , 5.0}. At the be-
ginning of each trial, swarm robots were always placed 1
[m] apart at random orientations. One trial ends when

300 steps (300 sec) are performed. We conducted 10
independent runs varying initial orientations.

Open Dynamics Engine (ODE) [19] was employed in
order to consider dynamics of robots and the interaction

between robots and environment. Control cycle was set
to 1 sec and the physics is updated every 0.01 sec.

5.1.2 Controller

Fig. 6 shows the controller employed in this experiment.

This controller is composed of the PFSM, exploration
layer, avoidance layer, approach layer and stop layer.

Some layers have the following modules: forward,
turn right or turn left, where forward means moving for-

ward and turn right (left) rotating clockwise (counter
clockwise) at the position. In the approach layer, the
approach module sends messages to one of the follow-

ing modules: forward, turn right or turn left accord-
ing to the sensory inputs from light sensors described
in Section 5.1.1 in order to approach to light sources.

In the obstacle avoidance layer, the avoidance module
sends messages to either turn right or turn left accord-
ing to the sensory inputs from infrared distance sensors

in order to avoid the walls or other robots which the
robot faces. The exploration layer can be explained as
the following; In the random walk module, the whole

steps are divided into the rotation phase and the move-
forward phase [18]. In the rotation phase, the controller
determines the direction of rotation and selects an angle

of rotation randomly from {45, 90, 135} degree. Then,
a robot rotates until reaches the desired angle. In the
move-forward phase, a robot moves forward driving two

wheels for a few seconds.
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Fig. 6 Subsumption architecture[15] with the PFSM

In the PFSM (Fig.7), we have three states: {Approach,
Wait, Repel}. This takes its inspiration from the refer-
ence [12]. Thus, L = 3 × 3 = 9. The details are as

follows;

– Approach:
– If the controller detects lights emitted by other

robots, the robot moves to the brightest direc-
tion based on Eq.(15).

– If the controller detects not other robots but

walls, the avoidance module becomes active.
– If the controller detects neither robot or wall,

the random walk module becomes active.

– Wait: the robot stops immediately.
– Repel:

– If the controller detects other robots or walls,

the avoidance module becomes active.
– If the controller detects neither robot or wall,

the random walk module becomes active.

5.1.3 Setting of the PSO

Computer simulations were conducted using particles
of size 20. The number of design variables was L = 9
as mentioned above. The PSO was employed to de-

termine the PFSM parameters. The parameters of the
PSO adopted in this experiment are as follows: c1 =
2.0, c2 = 2.0, w = 0.5 in Eq.(2). Each run lasted 200 it-

erations. f (Eq.(12)) was employed as an objective func-
tion. 1/c (Eq.(13)) was measured as the cluster metric.
We conducted 10 independent runs for each condition.

All results were averaged over 10 runs.

Approach

p11

Repel

p13

Wait

p12p31

p33
p32

p21

p23

p22

Fig. 7 State transition diagram of the PFSM for aggregation

5.2 Experimental Results

Table 1 shows the best objective function value at the
final iteration for each light sensor range, where the-

ory denotes the geometrical minimum values of f given
in [17]. Thus, the nearly optimal values were obtained
when R ≥ 2.5 for No = 10 and No = 20.

Fig. 8 shows the results for each iteration with No =
10. In Fig. 8(b), the inverse of c is plotted for the cluster
metric according to the decrease of f in Fig. 8(a). In

Fig. 8, the lines for R ≥ 2.5 are overlapped so that only
the upper line, which is for R = 5.0, can be seen. fs
decreased early iterations when R ≥ 2.0. fs were not
improved when R = 1.0 and 1.5. The cluster metric,

1/c converged toward 1.0 when R ≥ 2.5. That is, robots
could aggregate into one cluster when R ≥ 2.5. These
tendencies are also confirmed for No = 20 in Fig. 9.

For R, the lower bound for good performance was
found to be 2.5. Robots aggregate into a few clusters
through observing the behavior when R < 2.5. After

those aggregations, robots rarely change into one clus-
ter due to the detection range limitation of the sensor.

Table 1 f at the final iteration for each No and R in 10 runs

No = 10 No = 20
R = 1.0 432.47 1640.34
R = 1.5 192.95 725.30
R = 2.0 25.78 69.40
R = 2.5 13.61 55.35
R = 3.0 13.63 55.36
R = 3.5 13.67 55.34
R = 4.0 13.76 55.19
R = 4.5 13.66 55.23
R = 5.0 13.67 55.28

theory 13.50 54.65
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Fig. 8 Objective function value and cluster ratio for each
iteration with No = 10
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Fig. 9 Objective function value and cluster ratio for each
iteration with No = 20
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Fig. 10 State transition probabilities obtained for No = 10
in 10 runs
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Fig. 11 State transition probabilities obtained for No = 20
in 10 runs
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In the rest of the paper, R = 2.5 and 5 were em-

ployed for further analyses. Figs. 10 and 11 show the
state transition probabilities of the PFSM obtained for
No = {10, 20} and R = {2.5, 5} in 10 runs. The in-

dices of p correspond to those in Fig. 7. The darker the
line is, the smaller its f is. The red line shows those
of the PFSM in the best run. We can find a tendency

among those graphs: pi1 is high. We explain this from
the viewpoint of the aggregation task because pi1 is a
probability at which a state transits to the state, Ap-

proach. For the aggregation task, Approach is executed
frequently. Additionally, p22 and p32 in some runs are
relatively high compared with the other probabilities,

p23, p33. The PFSMs obtained in all the runs are not
the same for each (No, R) although there were no large
differences among the runs in the objective function

values (Table 2). This means that the nearly optimal
PFSM is not unique.

Figs. 12 and 13 show the state transition diagram
of the best evolved PFSMs for No = {10, 20} and R =
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(b) R = 5

Fig. 12 State transition diagram of the best evolve PFSM
with No = 10

Table 2 f at the final iteration for each No and R = 2.5, 5.0
in 10 runs

No = 10 No = 20
statistics best avg worst best avg worst
R = 2.5 13.56 13.61 13.67 55.12 55.35 55.69
R = 5 13.54 13.67 13.92 55.00 55.28 55.91

{2.5, 5}, respectively. These correspond to the red lines

in Figs. 10 and 11. Commonly, the PFSMs have the high
probability p11, where Approach transits to Approach.
Besides this, they have the low probabilities p12 and

p13, where Approach rarely transits to Wait or Repel.
This would make it possible to aggregate more closely.
These PFSMs have their unique characteristics and no

common structure was found for No with the same R.
By seeing the detail of the PFSM obtained by evolu-
tionary design, we can explain the characteristics of the

controller and be convinced by the collective behavior
of the swarm.
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Fig. 13 State transition diagram of the best evolved PFSM
with No = 20
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6 Scalability of the best evolved controller

This section investigates the scalability of the best evolved
controllers obtained in the previous section. Additional

computer simulations were conducted using the same
setting as the one in Section 5.1.1. The best evolved
controllers for No ∈ {10, 20} were evaluated varying

the number of robots N ∈ {10, 20, 30, 40}. We con-
ducted 20 independent runs for each parameter set-
ting. Tables 3 and 4 show the average values of f in

20 trials. In each table, theory denotes the geometrical
minimum value for each N [17], as referred in Section
5.2. Robots aggregated into a single cluster and then

fs show the nearly minimum values for almost all N
except for (N,R) = (40, 2.5). Even when N is more
than No, the controller shows good performances. Sur-
prisingly, there were no large differences between when

No = 10 and 20 in fs. When R = 2.5 and N = 40,
robots aggregated into a few clusters.

Table 3 Performance of the best evolved controllers with
No = 10 on f

N
10 20 30 40

R = 2.5 13.86 57.44 131.8 4625.97
R = 5.0 13.82 56.39 127.7 241.14

theory 13.50 54.65 123.5 220.33

Table 4 Performance of the best evolved controllers with
No = 20 on f

N
10 20 30 40

R = 2.5 14.29 56.44 129.4 4868.77
R = 5.0 13.95 56.71 128.1 239.71

theory 13.50 54.65 123.5 220.33

7 Conclusions

This paper proposed to use evolutionary computations

to determine the parameters of a probabilistic finite
state machine for a swarm robot controller. Several
computer simulations were conducted to investigate the

validity of the proposed method. The results obtained
in this paper show that the proposed method is use-
ful for the aggregation problem and the best evolved

controllers are feasible.
The proposed method depends much on primitive

actions initially prepared for states of the PFSMs. Gen-

erally, determination or selection of such primitives is

important to achieve robot control tasks in the PFSM

approach. The concept called domain ontology and low
level specification by Pfeifer in [16] would be helpful.
For basic collective behavior [2,20–22], several primi-

tive actions have been proposed. These could be also
useful for the proposed method.

As confirmed in the last two sections, the best evolved
PFSM is interpretable as well as scalable. This means

that the PFSM would be transferable to real environ-
ment and readjustable after its transfer. Future work
will investigate these potential abilities of the propose

method in real robot experiments. In literature men-
tioned above, there are several swarm robotics control
tasks where the controller with the PFSM was employed

[20–22]. The proposed method will be applied to those
control tasks.
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