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Abstract—Evolutionary multiobjective optimization (EMO) al-
gorithms have attracted much research interest in recent years.
In evolutionary robotics (ER), several papers have been published
where EMO algorithms have been applied to design multiobjec-
tive behavior of autonomous robots. However, these are for either
specific control tasks or controllers. Characteristics of EMO
algorithms on design of a more popular controller for simple
robot control tasks need to be investigated for fully understanding
them in ER. In this work, a multiobjective genetic algorithm was
applied to the design of a neural controller for multiobjective
behavior of a mobile robot in a looping maze problem, which is
a popular test problem for ER. Distribution of non-dominated
solutions in the objective function space were obtained from a
number of trials in the problem in order to investigate how
preferred solutions are distributed in them.

I. I NTRODUCTION

Evolutionary multiobjective optimization (EMO) algorithms
have attracted much research interest in recent years due to
their parallel population search [1][2]. Generally, there are two
kinds of approach in EMO algorithms; one is an approach to
finding the entire Pareto-optimal set (the Pareto-optimal front)
taking the advantage of their parallel population search, the
other an approach to finding a preferred set of Pareto-optimal
solutions, instead of the entire front, based on the decision
makers’ preference information.

In Evolutionary Robotics (ER)[3] where robot control sys-
tems are designed by using evolutionary techniques, most
researches employ single objective function to evaluate indi-
viduals. In the literatures, we can find several papers dealing
with the EMO algorithms in ER [4][5][6]. In those papers,
however, it does not seem likely that when artificial neural
networks (ANNs), which is a standard controller in ER,
are designed, the performance and dynamics of the EMO
algorithms are not discussed enough from the methodological
point of view .

This paper applied a typical EMO algorithm, NSGA-II[1],
to the design of ANNs for a controller of a mobile robot
in a looping maze problem, which is a popular test problem
for ER, in order to investigate distribution of non-dominated
and preferred solutions in the objective function space in
the problem. According to the results obtained from the

computer simulation, it was discussed which approach might
be appropriate in the EMO algorithms mentioned above.

The paper is organized as follows. Section II define a
robot control problem where the evolved neural networks are
evaluated. Section III formulate the problem as a multiob-
jective optimization problem. Section IV describes the neural
networks adopted in a robot control problem. Section V defines
preferred solutions in the problem and gives the results of
our computer simulations. Conclusions are given in the last
section.

II. CONTROL TASK

The control task used in this paper was looping maze, and
is based on a task originally implemented by Nolfi & Floreano
[3]. Figure 1 shows an experimental setup for this task. The
environment of the robot was a square arena surrounded by
walls with a circular object placed at the center, which became
simpler than the one in [3] for ease of understanding and check
experiment. An array of proximity sensors allow the robot to
perceive an object and walls. If objects intersect a proximity
sensor, the sensor outputs a value inversely proportional to
the distance between the object and the robot. A two-wheeled
robot was used in this experiment. Employing a mathematical
model of a mobile robot (Figure 2), the displacement of the
robot was computed as follows:

xt+1 = xt +
VR + VL

2
cos θt

yt+1 = yt +
VR + VL

2
sin θt (1)

θt+1 = θt +
VR − VL

2R
,

whereVR and VL are thevelocities applied to the right and
left wheel respectively,R is the radius of a robot and2R is
the interval between the wheels.VR and VL are set within
a continuous range,[0.0, Vmax], according to the activation
of the corresponding output units. The system error was not
implemented due to simple analysis.
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Fig. 1. Experimental setup for a looping maze problem

2R

VL

VR

0

Fig. 2. Simulated model for a mobile robot

III. F ITNESSFUNCTION

The performance measure originally employed by Nolfi &
Floreano [3] to be maximized for looping maze was as follows:

f =
1

MaxStep

MaxStep∑

t=1

V (1 −
√

∆V )(1 − smax), (2)

where MaxStep is maximum step size for a trial,V =
(|VL| + |VR|)/2Vmax, ∆V = |VL − VR|/Vmax, smax =
max{sj : j = 1, · · · , Ns} (sj : the normalized value of
the j-th sensor andNs: the number of sensors). The first
component,V , encourages motion, which is called,MOVE,
the second component,1−

√
∆V , encourages the two wheels

to rotate in the same direction,FORWARDand the third
component,1− smax, encourages obstacle avoidance,AVOID.
In the reference [3], they obtained such looping behaviors as
to maximize forward motion while avoiding all obstacles by
real-coded GAs. However, it is predictable that such desirable
behaviors are not always obtained using Equation 2 due to
the differences between experimental setups, e.g. the sizes
of environment or arrangements of sensor. In this paper,

therefore, those components in Equation 2 are employed as
objective functions then the problem was formulated as a
multiobjective optimization problem. Considering the physical
meaning of each component as well as the number of compo-
nents, the problem was formulated as two- and three-objective
optimization problems as follows.

A. two-objective optimization problem

Instead of the first and the second components in Equation
2, a new objective function,MOVE FORWARDwas formulated
by V (1 −

√
∆V ).

Maximize fi (i = 1, 2) (3)

f1 =
1

MaxStep

MaxStep∑

t=1

V (1 −
√

∆V ) (4)

f2 =
1

MaxStep

MaxStep∑

t=1

(1 − smax) (5)

B. three-objective optimization problem

The three components mentioned above were employed as
objective functions, respectively as follows:

Maximize fi (i = 1, 2, 3) (6)

f1 =
1

MaxStep

MaxStep∑

t=1

V (7)

f2 =
1

MaxStep

MaxStep∑

t=1

(1 −
√

∆V ) (8)

f3 =
1

MaxStep

MaxStep∑

t=1

(1 − smax) (9)

IV. N EURAL CONTROLLERS

In the reference [7], we proposed to use simply coded
evolutionary artificial neural networks (SCEANNs) for robot
control in order to shorten the time to evolve robots and
illustrated the performance of them using simulated robots.
This section describes the details of the SCEANNs.

A. Artificial Neural Networks

Artificial neural networks (ANN) is used withNs sensory
neurons,No fully interconnected motor neurons andNh fully
interconnected hidden neurons for a robot’s controller.

The output of thei-th neuron at timet is given by:

xi(t) = f(
∑

j

ωijxj(t − 1)) (10)

whereωij is the connection weight from the neuronj to the
neuroni, andf(x) is the output function of neurons, given by
the sigmoid function. Namely, their outputs are given by:

f(x) =
1

1 + exp(−x/T )
(11)

where T is a positive parameter to control the slope of the
sigmoid function. The output range is[0, 1].

711



In general EANN, network’s connection weights, firing
thresholds for each neuron (the slope when the sigmoid func-
tion employed), the architecture of networks and learning rules
are evolved [8]. In the SCEANNs, only connection weights are
evolved as variables of GAs in order to shorten the length of
the genotype. Therefore, the slope of the function,T , is set at
1, which is usually employed in pattern classification.

In [7], we proposed three kinds of architecture. This study
employed one of them according to the results obtained in the
previous work. The details are described as follows.

B. Simply Coded Evolutionary Artificial Neural Networks
(SCEANNs)

The SCEANNs are based on the EANNs originally coded
by Floreano[9][10], which was used for evolving real robots.
A string is composed of a series of blocks, each block defined
for a neuron in hidden and motor neurons (Figure 3). Sensory,
hidden and motor neurons are fully connected without coding
the presence/absence of a connection from each neuron. Thus,
each block is composed of only signs of all the connection
weights from sensory, hidden and motor neurons (Figure 4).
The synaptic strengths of all existing connections are set at1.
Therefore, the total length of the string isL = (Nh+No)(Ns+
Nh + No) bits, whereNs, Nh and No are the number of
sensory, hidden and motor neurons, respectively.

V. COMPUTERSIMULATION

A. Simulation Conditions

The control task used in this study is described in Section
II. At the beginning of each trial, a robot was always placed
at the same initial position, the bottom left corner, at three
kinds of orientation,{−45, 0, 45}◦ (Figure 1). One trial ends
either when max steps are performed. The robot behavior
is evaluated by using Equation (4)-(5) or (7)-(9). For this
experiment,MaxStep is set at200. A robot’s controllers were
SCEANNs [7] with7 sensory neurons,2 fully interconnected
motor neurons and one fully interconnected hidden neurons.

Fig. 3. Architecture of ANNs for1 block of a string

+ + + + + ++ + + +

Fig. 4. Genetic representation of one block in the SCEANN

Computer simulations were conducted using populations of
size100. The NSGA-II proposed by Debet al.[11], which is
one of the most widely used EMO algorithms, were employed
to evolve the string of SCEANNs. The NSGA-II uses standard
bit mutation and uniform crossover. The per-bit mutation rate
was set at1/L (L: the length of the genotype) and the
crossover rate was set at0.9 following the recommendations
given in [11].

A generational model was used. Each run lasted500 gen-
erations. We conducted100 independent runs.

B. Preference Information and Number of Objectives

As mentioned in Section, this study investigates distribution
of preferred solutions in the objective function space obtained
from a number of trials in the problem as well as distribution
of non-dominated solutions in it. Considering the control task
and fitness functions mentioned in Section II, it is intuitively
understood that preferred solutions in this problem are the ones
which show looping behaviors while avoiding obstacles as fast
as possible. In Figure 5,θk is defined as a relative angle from
the robot’s initial position to the current position. At each time
step,θmax is updated as follows:θmax ← θk if θk > θk−1.
Therefore, preferred solutions are defined as the ones which
showθmax > 360◦ at the maximum time step.

In this control task, preference information is expressed
quantitatively as mentioned above. Perhaps, it may be consid-
ered that that information can be employed as one of objective
functions. But there is a major conceptual difference between
the calculations of Equation (4)-(5), (7)-(9) andθk with respect
to using internal or external sensors. First of all, Equation
(4)-(5) and (7)-(9) are calculated by using only the values of
sensors equipped with a mobile robot (e.g., infrared sensors
to detect distance and rotary encoders to detect velocities of
wheels). On the other hand, the global vision is needed for
calculatingθk, that is, it is assumed thatθk is calculated by
using external sensors which are not equipped with a robot
(e.g., an overhead vision camera). Considering autonomy or

Fig. 5. Relative angle between the initial and current positions of a mobile
robot
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automationof the whole system including evolutionary com-
putations, it is desirable that objective functions are calculated
by using only internal sensors (the similar concept is found
in RoboCup Soccer between the settings of small size robot
league and middle size robot league [12].). Therefore,θk is
employed as preference information in this study.

Addition to this, in EMOs, it is reported [13] that the
convergence of the obtained non-dominated solutions towards
the Pareto-optimal front is declined with a large number of
objectives (generally speaking, four or more objectives). In
small-objective problem-solving, useful techniques have been
proposed so far in the references. Those can be incorporated
into our robot systems as well as objective function space can
be visualized if the number of objectives is less than four. This
is a reason why this problem was formulated as two or three
objective optimization problem.

C. Simulation Results

Figure 6 shows the sets of non-dominated solutions (red
points) and preferred solutions (green points) of the two-
objective optimization problem represented by Equation (4)-
(5) obtained at500th generation in100 runs, where non-
dominated solutions are all the solutions which were ranked
best in each run. There is no guarantee that they are Pareto-
optimal solutions because thestandard NSGA-II were em-
ployed. But they seem to outline the shape of the Pareto front
in the problem. Moreover, we find that the preferred solutions
are distributed in a specific region of the non-dominated
solutions.

Figure 7 shows the same kind of solutions as Figure 6
of the three-objective optimization problem represented by
Equation (7)-(9). It seems that the non-dominated solutions
form a Pareto surface in the three-objective function space
(Figure 7(d)). The distribution of the non-dominated solutions
is difficult to evaluate from the three-dimensional Pareto sur-
face. Therefore, the three projections of the Pareto surface onto
the corresponding two-dimensional planes are also provided in
Figure 7(a)-7(c). For Figure 7(a) onf1 and f3, there are no
lower bounds and the non-dominated solutions are distributed
widely. Forf2, which shows the competenceFORWARD, the
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Fig. 6. Distribution of non-dominated solutions and preferred solutions in
the two-objective space

non-dominated solutions are not distributed over the range
f2 < 0.13 and0.33 < f2 in Figure 7(b)-7(c). This is because if
the objective value forf2, FORWARD, is too large, a robot can
not avoid any obstacles and if it is too small, a robot mainly
rotates around a position or circles even though the objective
value forf1, MOVE, is suppressed to a certain degree. As the
two-objective optimization problem, we find that the preferred
solutions are distributed in a specific region of the non-
dominated solutions (0.13< f1 < 0.27, 0.12 < f2 < 0.21
and0.06 < f3 < 0.18) in Figure 7 and 8. It is interesting that
the preferred solutions have the small objective values forf2

in the non-dominated solutions. The preferred solutions show
the behaviors where robots avoid any obstacles and loop in
the environment. Therefore, robots do not show the desired
behaviors in the case that the objective value forf2 is too
large, that is, robots promoteFORWARDmotion as much as
as possible.

Figure 9 and 10 show the behavior of a preferred solution
of the two-objective and three-objective optimization problem,
respectively. We find that the robot completes the loop in the
environment while avoiding obstacles. Though it is difficult
to distinguish the difference between the behaviors shown in
Figure 9 and 10, the behavior of the solution of three-objective
optimization problem shows more forward motion than the
one of the two-objective optimization problem does. This is
because three objective functions were set in Equation (7)-(9)
and then Pareto-ranking selection employed in NSGA-II add
proper selection pressure to improve values of the objective
functions.

VI. CONCLUSIONS

This work applied a typical EMO algorithm to the design of
ANNs for a controller of a mobile robot in order to investigate
distribution of non-dominated and preferred solutions in the
objective function space in a problem. The results can be
summarized as follows:

• A mobile robot control problem, a looping maze problem,
was formulated as a multiobjective optimization problem.

• The shapes of the Pareto front in the problem were almost
grasped although the convergence of the obtained non-
dominated solutions towards the Pareto-optimal front in
real-world problems cannot be evaluated.

• We found in the problem that the preferred solutions
are distributed in a specific region of the non-dominated
solutions in both the two-objective and three-objective
optimization problem.

• The behaviors of preferred solutions show the desired
ones in the environment.

These results suggest that EMO algorithms are applicable to
the navigation of a mobile robot as well as that an approach
to finding a preferred set of Pareto-optimal solution [13] will
be useful.

Future work will apply such approaches to multi-robot
navigation problems with the same environment in this work.
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Fig. 7. Distribution of non-dominated solutions and preferred solutions in
the three-objective space
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Fig. 8. Objective value of solutions

Fig. 9. Behavior of a preferred solution of the two-objective optimization
problem

Fig. 10. Behavior of a preferred solution of the three-objective optimization
problem
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