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Abstract—Evolutionary multiobjective optimization (EMO) al-  computer simulation, it was discussed which approach might

gorithms have attracted much research interest in recent years. pe appropriate in the EMO algorithms mentioned above.

In evolutionary robotics (ER), several papers have been published . : . .
where EMO algorithms have been applied to design multiobjec- The paper is organized as follows. Section Il define a
tive behavior of autonomous robots. However, these are for either '0POt control problem where the evolved neural networks are

specific control tasks or controllers. Characteristics of EMO evaluated. Section Ill formulate the problem as a multiob-
algorithms on design of a more popular controller for simple jective optimization problem. Section IV describes the neural
robot control tasks need to be investigated for fully understanding networks adopted in a robot control problem. Section V defines
them in ER. In this work, a multiobjective genetic algorithm was . : .

applied to the design of a neural controller for multiobjective preferred SOIUt'(_)nS n the problem_and gives the_results of
behavior of a mobile robot in a looping maze problem, which is OUr computer simulations. Conclusions are given in the last

a popular test problem for ER. Distribution of non-dominated  section.

solutions in the objective function space were obtained from a

number of trials in the problem in order to investigate how

preferred solutions are distributed in them. Il. CONTROL TASK

I. INTRODUCTION The control task used in this paper was looping maze, and
Evolutionary multiobjective optimization (EMO) algorithmsIS based on a task originally implemented by Nolfi & Floreano

have attracted much research interest in recent years duéBﬂo.Flgure 1 s?oxvs aT) experimental setup for this tasl:j. Ehg
their parallel population search [1][2]. Generally, there are t V|ronment 0 the rot ot was a square arena surrounded by
kinds of approach in EMO algorithms; one is an approach %alls with a circular quect placed at the center, WhICh became
finding the entire Pareto-optimal set (the Pareto-optimal front mpler than the one in [3] for ease of understanding and check

taking the advantage of their parallel population search, tfi per!ment. An. array of proximity sensors allow the robqt FO
greeive an object and walls. If objects intersect a proximity

other an approach to finding a preferred set of Pareto—optin? h lue | | ional
solutions, instead of the entire front, based on the decisiqﬁnsqr’ the sensor outputs a value Inversely proportional to
the distance between the object and the robot. A two-wheeled

makers’ preference information. robot was used in this experiment. Employing a mathematical
In Evolutionary Robotics (ER)[3] where robot control sys- . : : .
Vot y ics (ER)I3] w y del of a mobile robot (Figure 2), the displacement of the

tems are designed by using evolutionary techniques, mJ4 ; ted as foll )
researches employ single objective function to evaluate ingfPot was computed as 1ollows:
viduals. In the literatures, we can find several papers dealing

. ; . Ve +VL
with the EMO algorithms in ER [4][5][6]. In those papers, Tyy1 = Ty + ——F——cosby
however, it does not seem likely that when artificial neural Ve+ Vi
networks (ANNSs), which is a standard controller in ER, Yer1 = Y+ o sinb; (1)
are designed, the performance and dynamics of the EMO Vi — Vi
algorithms are not discussed enough from the methodological Orp1 = O+ “oR

point of view .

This paper applied a typical EMO algorithm, NSGA-II[1],where Vr and V;, are thevelocities applied to the right and
to the design of ANNs for a controller of a mobile roboteft wheel respectivelyR is the radius of a robot an2R is
in a looping maze problem, which is a popular test problethe interval between the wheel®z and V;, are set within
for ER, in order to investigate distribution of non-dominated continuous rang€l0.0, V;,..|, according to the activation
and preferred solutions in the objective function space of the corresponding output units. The system error was not
the problem. According to the results obtained from thienplemented due to simple analysis.
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therefore, those components in Equation 2 are employed as
objective functions then the problem was formulated as a
multiobjective optimization problem. Considering the physical
meaning of each component as well as the number of compo-
nents, the problem was formulated as two- and three-objective
optimization problems as follows.

A. two-objective optimization problem

Instead of the first and the second components in Equation
2, a new objective functiodylOVE FORWARDvas formulated

by V(1 — VAV).
Maximize f; (i=1,2) 3)
1 MaxStep
= — V(- VAV 4
h MazStep ; ( ) “)
Fig. 1. Experimental setup for a looping maze problem 1 MaxzStep
fo= Mi Z (1 - SmaX) (5)
y axStep —
B. three-objective optimization problem
The three components mentioned above were employed as
objective functions, respectively as follows:
Maximize f; (1=1,2,3) (6)
1 MaxStep
= — V 7
h MazStep ; )
1 MaxStep
= — 1—-vVAV 8
fe MaxStep ; ( ) ®)
1 MaxStep
— T 1- max 9
0 X fs MaxStep ; (1= smax) ©)
Fig. 2. Simulated model for a mobile robot IV. NEURAL CONTROLLERS

In the reference [7], we proposed to use simply coded
I1l. FITNESSFUNCTION evolutionary artificial neural networks (SCEANNS) for robot
ontrol in order to shorten the time to evolve robots and

The performance measure or|g|na_lly employed by Nolf Mustrated the performance of them using simulated robots.
Floreano [3] to be maximized for looping maze was as foIIowa.hiS section describes the details of the SCEANNS.

MaxStep
f= b Z V(1 —VAV)(1 = smaz), (2) A. Artificial Neural Networks
MazStep e : ,

t=1 Artificial neural networks (ANN) is used witV, sensory
where MaxStep is maximum step size for a triall’ = neurons,V, fully interconnected motor neurons and, fully
(VL] + [Vel)/2Vimax, AV = |V — VR|/Vimax, Smax = interconnected hidden neurons for a robot's controller.
max{s; : j = 1,---,Ng} (s;: the normalized value of The output of thei-th neuron at time is given by:
the j-th sensor andV,: the number of sensors). The first
component,V, encourages motion, which is calleMOVE, zi(t) = f(z wijzj(t —1)) (10)
the second componerit— +/AV, encourages the two wheels Y

to rotate in the same directiotFORWARDand the third wherew;; is the connection weight from the neurgrto the
componentl — smax, €ncourages obstacle avoidand¥OID. neuroni, and f(z) is the output function of neurons, given by
In the reference [3], they obtained such looping behaviors & sigmoid function. Namely, their outputs are given by:
to maximize forward motion while avoiding all obstacles by 1
real-coded GAs. However, it is predictable that such desirable fla)= ————
behaviors are not always obtained using Equation 2 due to 1+ exp(~2/T)
the differences between experimental setups, e.g. the simdwre T is a positive parameter to control the slope of the
of environment or arrangements of sensor. In this papsigmoid function. The output range [8, 1].

11)
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In general EANN, network’s connection weights, firing Computer simulations were conducted using populations of
thresholds for each neuron (the slope when the sigmoid fursize 100. The NSGA-II proposed by Debt al[11], which is
tion employed), the architecture of networks and learning rulese of the most widely used EMO algorithms, were employed
are evolved [8]. In the SCEANNS, only connection weights ate evolve the string of SCEANNSs. The NSGA-II uses standard
evolved as variables of GAs in order to shorten the length bit mutation and uniform crossover. The per-bit mutation rate
the genotype. Therefore, the slope of the functiBnis set at was set atl/L (L: the length of the genotype) and the
1, which is usually employed in pattern classification. crossover rate was set @9 following the recommendations

In [7], we proposed three kinds of architecture. This studyiven in [11].
employed one of them according to the results obtained in theA generational model was used. Each run lagied gen-
previous work. The details are described as follows. erations. We conductetD0 independent runs.

B. Simply Coded Evolutionary Artificial Neural Networkd3. Preference Information and Number of Objectives
(SCEANNS) As mentioned in Section, this study investigates distribution

The SCEANNSs are based on the EANNSs originally codeef preferred solutions in the objective function space obtained
by Floreano[9][10], which was used for evolving real robotdrom a number of trials in the problem as well as distribution
A string is composed of a series of blocks, each block definefinon-dominated solutions in it. Considering the control task
for a neuron in hidden and motor neurons (Figure 3). Sensoayd fitness functions mentioned in Section Il, it is intuitively
hidden and motor neurons are fully connected without codingiderstood that preferred solutions in this problem are the ones
the presence/absence of a connection from each neuron. Thddch show looping behaviors while avoiding obstacles as fast
each block is composed of only signs of all the connectid@s possible. In Figure %, is defined as a relative angle from
weights from sensory, hidden and motor neurons (Figure 4f)e robot’s initial position to the current position. At each time
The synaptic strengths of all existing connections are sét atstep,fm.x is updated as followstax < O if O > Op_1.
Therefore, the total length of the stringlis= (N, +N,)(N,+ Therefore, preferred solutions are defined as the ones which
Ny, + N,) bits, where N,, N;, and N, are the number of Show ., > 360° at the maximum time step.

sensory, hidden and motor neurons, respectively. In this control task, preference information is expressed
guantitatively as mentioned above. Perhaps, it may be consid-

V. COMPUTER SIMULATION ered that that information can be employed as one of objective

A. Simulation Conditions functions. But there is a major conceptual difference between

The control task used in this study is described in Sectiéh€ calculations of Equation (4)-(5), (7)-(9) afidwith respect

II. At the beginning of each trial, a robot was always place@ using internal or external sensors. .First of all, Equation
at the same initial position, the bottom left corner, at thrdd)-(3) and (7)-(9) are calculated by using only the values of
kinds of orientation{—45,0,45}° (Figure 1). One trial ends S€NSOrs equipped with a mobile robot (e.g., infrared sensors
either when max steps are performed. The robot behavigrdetect distance and rotary encoders to detect velocities of
is evaluated by using Equation (4)-(5) or (7)-(9). For thig/heels).. On the ot.her. hand, the global vision is needed for
experimentMazStep is set a00. A robot's controllers were calculatingdy, that is, it is assumed tha is calculated by
SCEANNS [7] with7 sensory neurong, fully interconnected YSINg external sensors which are not eq_wpped with a robot
motor neurons and one fully interconnected hidden neuroné€-9- an overhead vision camera). Considering autonomy or

[ ] Input Neuron (OHidden Neuron (O)Output Neuron

Fig. 3. Architecture of ANNs forl block of a string

A A A A s

) ) ) ) Fig. 5. Relative angle between the initial and current positions of a mobile
Fig. 4. Genetic representation of one block in the SCEANN robot
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automationof the whole system including evolutionary comnon-dominated solutions are not distributed over the range
putations, it is desirable that objective functions are calculatgd < 0.13 and0.33 < f, in Figure 7(b)-7(c). This is because if
by using only internal sensors (the similar concept is fourtle objective value fof,, FORWARD, is too large, a robot can
in RoboCup Soccer between the settings of small size robmait avoid any obstacles and if it is too small, a robot mainly
league and middle size robot league [12].). Thereféfejs rotates around a position or circles even though the objective
employed as preference information in this study. value for f;, MOVE, is suppressed to a certain degree. As the
Addition to this, in EMOs, it is reported [13] that thetwo-objective optimization problem, we find that the preferred
convergence of the obtained non-dominated solutions towastgutions are distributed in a specific region of the non-
the Pareto-optimal front is declined with a large number @fominated solutions (0.1 f; < 0.27, 0.12 < fy < 0.21
objectives (generally speaking, four or more objectives). Bnd0.06 < f3 < 0.18) in Figure 7 and 8. It is interesting that
small-objective problem-solving, useful techniques have betire preferred solutions have the small objective valuesffor
proposed so far in the references. Those can be incorporatethe non-dominated solutions. The preferred solutions show
into our robot systems as well as objective function space cdie behaviors where robots avoid any obstacles and loop in
be visualized if the number of objectives is less than four. ThiBe environment. Therefore, robots do not show the desired
is a reason why this problem was formulated as two or thréehaviors in the case that the objective value foris too
objective optimization problem. large, that is, robots promofeORWARDMotion as much as
as possible.
Figure 9 and 10 show the behavior of a preferred solution
Figure 6 shows the sets of non-dominated solutions (re€lthe two-objective and three-objective optimization problem,
points) and preferred solutions (green points) of the twoespectively. We find that the robot completes the loop in the
objective optimization problem represented by Equation (4¢nvironment while avoiding obstacles. Though it is difficult
(5) obtained at500th generation in100 runs, where non- to distinguish the difference between the behaviors shown in
dominated solutions are all the solutions which were rankédgure 9 and 10, the behavior of the solution of three-objective
best in each run. There is no guarantee that they are Pareigtimization problem shows more forward motion than the
optimal solutions because trstandard NSGA-II were em- one of the two-objective optimization problem does. This is
ployed. But they seem to outline the shape of the Pareto frasdcause three objective functions were set in Equation (7)-(9)
in the problem. Moreover, we find that the preferred solutiorz;d then Pareto-ranking selection employed in NSGA-II add
are distributed in a specific region of the non-dominatgstoper selection pressure to improve values of the objective
solutions. functions.
Figure 7 shows the same kind of solutions as Figure 6
of the three-objective optimization problem represented by
Equation (7)-(9). It seems that the non-dominated solutions

form a Pareto surface in the three-objective function spaceThis work applied a typical EMO algorithm to the design of
(Figure 7(d)). The distribution of the non-dominated solutiongNNs for a controller of a mobile robot in order to investigate
is difficult to evaluate from the three-dimensional Pareto sugiistribution of non-dominated and preferred solutions in the
face. Therefore, the three projections of the Pareto surface opijective function space in a problem. The results can be
the corresponding two-dimensional planes are also providetsiimmarized as follows:

Figure 7(a)-7(c). For Figure 7(a) ofi and f3, there are no
lower bounds and the non-dominated solutions are distributed
widely. For f5, which shows the competenE®©RWARD the

C. Simulation Results

VI. CONCLUSIONS

A mobile robot control problem, a looping maze problem,
was formulated as a multiobjective optimization problem.
« The shapes of the Pareto front in the problem were almost
grasped although the convergence of the obtained non-
dominated solutions towards the Pareto-optimal front in
nondominated real-world problems cannot be evaluated.
preferred « We found in the problem that the preferred solutions
are distributed in a specific region of the non-dominated
solutions in both the two-objective and three-objective
optimization problem.
o The behaviors of preferred solutions show the desired
ones in the environment.

0.3

0 ' These results suggest that EMO algorithms are applicable to
0 0.1 the navigation of a mobile robot as well as that an approach
to finding a preferred set of Pareto-optimal solution [13] will
be useful.
Fig. 6. Distribution of non-dominated solutions and preferred solutions in Future work will apply such approaches to multi-robot
the two-objective space navigation problems with the same environment in this work.
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Fig. 7. Distribution of non-dominated solutions and preferred solutions in
the three-objective space
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Fig. 8. Objective value of solutions

Fig. 9. Behavior of a preferred solution of the two-objective optimization
problem

Fig. 10. Behavior of a preferred solution of the three-objective optimization
problem
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