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Abstract: This paper proposes to use evolutionary computations to design probabilistic finite state machine for the
controller on an aggregation problem of swarm robotics. This problem formulated as an optimization problem was solved
by the PSOs. Several computer simulations were conducted to investigate the validity of the proposed method. The results
obtained in this paper show to us that the proposed method is useful for the aggregation problem and the best optimized
controllers are interpretable. This would be transferable to real swarm robots problems.
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1. INTRODUCTION

Swarm Robotics (SR) [1, 2] have attracted much re-
search interest in recent years. Generally, the tasks in
SR are difficult or inefficient for a single robot to cope
with. Thus, SR and multi-robot systems overlap each
other. Sahin [3] enumerated several criteria1 for distin-
guishing swarm robotics as follows:
• autonomy: Each robot should be physically embodied
and situated.
• redundancy: Group sizes accepted as swarms is 10 to
20.
• scalability: SR system should be able to operate under
a wide range of group sizes.
• simplicity: Each robot should employ cheap design,
that is, the structure of a robot would be simple and the
cost for it would be cheap.
• homogeneity: SR system should be composed of ho-
mogeneous individuals. This enhances the above 2nd and
3rd criterion.
Following the last criterion, homogeneous controllers for
individuals are desirable for SR systems. Additionally,
this approach does not assume the existence of an explicit
leader in swarm robots due to the above criteria. This re-
sults in that a collective behavior emerges from the local
interactions among robots and between the robots and the
environment. Therefore, SR systems are required for that
individuals show various behaviors through those inter-
actions although the individuals are homogeneous.

Following the taxonomies proposed by Brambilla[2],
we have the most common design methods to develop
swarm robotics systems: behavior-based design and au-
tomatic design. In behavior-based design methods, there
are further three categories: subsumption architecture
design method, probabilistic finite state machine design
method, virtual physics-based design method and others.
On behavior-based design methods, such swarm robotics
systems are developed by hand of the designer until the
desired collective behavior is obtained. Such effort to de-

† Yoshiaki Katada is the presenter of this paper.
1Sahin [3] claimed that these criteria should be used as a measure of the
degree of SR in a particular study.

sign collective behavior is larger than those to design sin-
gle robot behavior because the interactions are so com-
plex among robots and between the robots and the envi-
ronment.

In automatic design methods, there are two categories:
reinforcement learning and evolutionary robotics. In re-
inforcement learning (RL), an agent aims at building
value functions in the process of learning while getting
rewards from the environment. Such optimality is guar-
anteed based on Markovian decision process, e.g., Q-
learning. The existence of other robots may violate such
an assumption. From the viewpoint of a search problem,
RL is considered as a single point search. The ability to
search the optimal solution is not so high.

In evolutionary robotics[4], evolutionary computation
(EC) is generally applied to design artificial neural net-
works (ANNs) as a controller of a robot. In the case
of SR [1], an evolved controller is commonly used for
each individual robot or the controller for each robot is
designed individually in the context of cooperative co-
evolution. The best evolved neural controller may show
good performance on robot control tasks in simulated en-
vironment. However, such controllers suffer from the gap
between simulated and real environment when the con-
trollers are transferred to real environment[5-9]. This is
due to uncertainty derived from real environment: noise,
complexity and nonlinear dynamics of ANNs. When we
adjust parameters of ANN due to such uncertainty, we
find it hard to interpret the collective behavior emerged
from the best evolved neural controller.

In order to overcome these problems, we propose to
use probabilistic finite state machines instead of ANNs
for the controller on a swarm robot control task in the
context of ER. That is, we apply evolutionary computa-
tions to design a probabilistic finite state machine for the
swarm robot controller. Such automatic design of proba-
bilistic finite state machines would decrease the effort of
the design of collective behavior for swarm robot drasti-
cally.

The paper is organized as follows. The next section
describes an EC, particle swarm optimization applied to
design the PFSMs. Section 3 describes probabilistic finite
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  state machine adopted in a swarm robots control prob-
lem. Section 4 defines the swarm robot control problem,
aggregation[10-12], where the probabilistic finite state
machines designed by the PSO are evaluated. Section
5 gives the results of our computer simulations. Conclu-
sions are given in the last section.

2. PARTICLE SWARM OPTIMIZATION
(PSO)

Kennedy and Eberhart [13] introduced particle swarm
optimization (PSO) that was based on social behavior of
fish schooling or bird flocking. The PSOs have been ap-
plied to various fields so far due to the search perfor-
mance and the simplicity of their algorithms.

The optimization problems solved by the PSOs in this
paper are formulated as follows:

min
x

f(x), (1)

where x = (x1, x2, · · · , xL)T ∈ RL.
In the PSOs, a solution in the search space is called,

“particle”. All the particles in a population have their own
positions and velocities. At each iteration, particles are
updated. The update method of positions and velocities
in the PSO is as follows:

vk+1
ij = w · vkij + c1 · rand() · (pbestij − xkij)

+c2 · rand() · (gbestj − xkij), (2)

xk+1
ij = xkij + vk+1

ij , (3)

where rand() is a random number between [0, 1], w, c1
and c2 are weight factors for the terms. xkij is the j-th
variable in the position vector of the i-th particle at itera-
tion k, vkij is the j-th variable in the velocity vector of the
i-th particle. pbestij is the j-th variable in the best po-
sition visited so far by the i-th particle and gbestj is the
j-th variable in the best position visited so far by all the
particles. Each particle is evaluated by the objective func-
tion f(·) to be optimized. The update method in Eq.(2)
is called, “inertia weight model (IWM)”, which is em-
ployed in this paper.
w, c1 and c2 are parameters to tune for good perfor-

mance of the PSO. The several methods to tune those pa-
rameters have been proposed. In this paper, linearly de-
creasing inertia weight method (LDIWM) was employed
as well as IWM. In LDIWM, w is not constant but time-
varying according to the increase of iterations:

w(k) = wmax −
wmax − wmin

kmax
× k, (4)

where wmax and wmin are the upper and lower bounds
of inertia weight, and kmax is the maximum number of
iterations.

3. PROBABILISTIC FINITE STATE
MACHINE (PFSM)

3.1. Definition of the PFSM
There are many literatures in swarm robotics employ-

ing a controller to be considered as a class of finite state

machine with probabilistic transitions. Brambilla[2] clas-
sified those controllers as probabilistic finite state ma-
chines (PFSMs). There are several variants of the PFSMs
employed in swarm robotics 2 .

In the PFSMs employed in SR, we set several states
for an individual robot. Let S = {S1, S2, · · · , Sm} be
a finite set of m states. Each state may correspond to a
module[16], a primitive of the domain ontology[17] or a
basic behavior[11]. A state transits to the next state with a
probability (Fig. 1). We can describe those probabilities
as a state transition probability matrix. This is defined as
follows:

P = {pij ∈ ℜ | 0 ≤ pij ≤ 1,

m∑
j=1

pij = 1, (5)

i, j ∈ {1, 2, · · · ,m}},
where P ∈ ℜm×m is a matrix in which each entry pij is
the transition probability from state i to state j.

S1

p11

S3

p13

S2

p12p31

p33
p32

p21

p23

p22

Fig. 1 State transition diagram of the PFSM

3.2. Automatic design of the PFSM
The PFSM is optimized as the design variables in

an optimization problem by the PSO. The optimization
problem is formulated as follows:

min f(pij), (6)
subject to 0 ≤ pij ≤ 1, i, j = 1, 2, · · · ,m, (7)

m∑
j=1

pij = 1, i = 1, 2, · · · ,m. (8)

According to Eq. (5), |P | = m ×m. Thus, the number
of design variables is m×m. In the process of the PSO,
initial particles x0s are generated in the range [0, 1]. Ac-
cording to Eqs. (2) and (3) for k > 0, xks would violate
the constraints, Eqs. (7) or (8). Thus, we must consider
these two constraints in order not to leave xk unfeasible.

These constraints can be replaced with the following
constraints.

0 ≤ pij , (9)

pij ≤ 1 ∩
m∑
j=1

pij = 1, i, j = 1, 2, · · · ,m. (10)

2We need discussions whether those are the PFSMs anywhere.
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  In order for pij to satisfy Eq. (9), we apply mirroring to
pij as follows:

p′ij =

{
−pij : if pij < 0
pij : otherwize. (11)

p′ij is kept in the design variables for next update. After
that, to satisfy Eq. (10), we normalize p′ij as follows:

p′′ij =
p′ij∑m
j=1 p

′
ij

. (12)

p′′ij is used only for evaluations of the objective functions
and is not kept in the design variables for next update.

4. SWARM ROBOT CONTROL
PROBLEM AND THE OBJECTIVE

FORMULA
Swarm robot control problem in this paper is set to

be aggregation[10] where robots aggregate to an arbitrary
position as closely as possible from their initial positions.
Aggregation is considered to be a building block for ap-
plications so that the task of aggregation is often used as
a case study [11][12].

In this paper, two performance measures were em-
ployed according to the reference[12]: dispersion met-
ric and cluster metric. The dispersion metric to be mini-
mized is as follows:

f1 =
1

4r2

N∑
i=1

||p(t)
i − p(t)||2, (13)

where r is the radius of a robot, p(t)
i is the position of the

i-th robot at time t, p(t) is the center of the positions of
all the robots.

The cluster metric is as follows:

c =
number of robots in the largest cluster at time t

N
,(14)

where a cluster is defined as a maximal connected sub-
graph, where two robots are adjacent if the distance be-
tween the centers of them is less than 4r.

Thus, the 2nd objective function to be minimized is as
follows:

f2 =
1

c
. (15)

The objective functions are evaluated when t is the final
time step in a trial.

5. COMPUTER SIMULATION
5.1. Setting of computer simulations
5.1.1. Simulated swarm robot and environment

According to the previous experiment using the swarm
mobile robots [14], the setting of computer simulations
was as follows. 10 differential wheeled robots (Fig. 2)
were used in this experiment. The robot’s diameter and
height are approximately D = 170 mm and H = 75
mm, respectively. The robot is equipped with four in-
frared distance sensors located at the front of the body
for measuring the distance to other robots and walls (Fig.

Fig. 2 Setup for swarm mobile robots

Fig. 3 Distance sensor configurations: (left) sensors for
other robots, (right) sensors for obstacles

3 (right)), and four distance sensors located at the front
of the body for detecting other robots (Fig. 3 (left)). The
maximum detection ranges of the former sensor and the
latter sensor are 300 mm and 5 m, respectively.

The simulated environment is a square arena with
walls (Fig. 4). The length of the wall was set at 10 m.
At the beginning of each trial, swarm robots were al-
ways placed at the same initial position at random orien-
tations. One trial ends when 30, 000 steps (300 sec) are
performed. We conducted 10 independent runs varying
initial orientations.

Open Dynamics Engine (ODE) [15] was employed in
order to consider dynamics of robots and the interaction

Fig. 4 Set up for computer simulation: Initially, swarm
robots are always placed at the center.
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between robots and environment.

5.1.2. Controller
Fig. 5 shows the controller employed in this experi-

ment. This takes its inspiration from the reference [11].
This controller is composed of the PFSM, a random walk
module, an avoidance module, approach module and stop
module. In the PFSM (Fig.6), we have three states:
{Approach, Wait, Repel}. Thus, m = 3 and |P | = 9.
• Wait: the robot stops immediately.
• Approach:
– If the controller detects other robots, the robot ap-

proaches to the detected robots. When the distance be-
tween the robots is less than the threshold3, the state tran-
sits to Wait to stop the robot.
– If the controller detects not a robot but obstacles, the

avoidance module becomes active.
– If the controller detects neither robot or obstacle, the

random walk module becomes active.
• Repel:
– If the controller detects other robots or obstacles, the

3The threshold value was set to D mentioned in Section 5.1.1.
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Fig. 5 Subsumption architecture[16] with the PFSM
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Fig. 6 State transition diagram of the PFSM for aggrega-
tion

avoidance module becomes active.
– If the controller detects no obstacles, the random walk

module becomes active.
In the random walk module, the whole steps are di-

vided into the rotation phase and the move-forward phase
[14]. In the rotation phase, the controller determines
the direction of rotation and selects an angle of rotation
randomly from {45, 90, 135} degree. Then, a robot ro-
tates until reaches the desired angle. In the move-forward
phase, a robot moves forward driving two wheels. Its one
step is set in two way: constant and Gaussian. For con-
stant random walk, one step is set at 0.1 sec due to that
the physics is updated at a rate of 10 times per control cy-
cle. For Gaussian random walk, one step is determined
according to Gaussian distribution.

5.1.3. Setting of the PSO
Computer simulations were conducted using particles

of size 20. The number of design variables was L = 9
mentioned above. The PSO was employed to design the
PFSM parameters. The parameters of the PSO adopted
in this experiment are as follows: c1 = 2.0, c2 = 2.0,
w = 0.5 in Eq.(2) for IWM and c1 = 2.0, c2 = 2.0,
wmin = 0.4, wmax = 0.9 in Eq.(4) for LDIWM. Each
run lasted 200 iterations. We conducted 10 independent
runs for each condition. All results were averaged over
10 runs.

We conduct two types of optimization problem;
- single objective optimization (single obj) We employed
a single objective function, f1, in Eq.(13).
-two objective optimization (two obj) In addition to f1,
we employed f2 in Eq.(15) in order to decrease the num-
ber of clusters. For this multiobjective optimization, we
applied Lexicographic ordering[18] where f2 has prior-
ity over f1; When f2(P ) < f2(P

′) or f2(P ) > f2(P
′),

f1 is not evaluated. When f2(P ) = f2(P
′), f1(P )

and f1(P ′) are compared for updating the position in the
memory of the PSO. This priority considers the discrete-
ness of f2.

5.2. Experimental Results
5.2.1. Objective function values

Figs. 7(a) and 7(b) show the best objective function
values of f1 for each iteration for single obj and two obj,
respectively. The IWM shows good performance regard-
less of the type of random walk. The LDIWM for Gaus-
sian random walk shows the worst performance among
them. The objective function values in Fig. 7(a) were
better than those in in Fig. 7(b) for each condition.

Fig. 7(b) shows non-elitism, that is, the objective func-
tion values can not keep their best values in the previous
iteration. This is due to Lexicographic ordering where f2
has priority over f1. Fig. 7(c) shows the best objective
function values of f2 for each iteration for two obj. The
same tendencies were observed as those in Fig. 7(a). The
differences among the conditions were small at the last
iteration. No condition was found where f2 converges to
1. This means that the swarm robots did not aggregate
into a single cluster.
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Fig. 7 Objective function values for each iteration

5.2.2. Performance of the best optimized controller
In this section, we investigate the performance of the

best optimized controllers obtained in the previous sec-
tion. The IWM for constant random walk shows the best
performance for single obj and two obj. Table 1 shows the
performance in 50 trials on the dispersion (f1 in Eq.(13))
and the ratio of the number of robots in the largest clus-
ter (c in Eq.(14)). The controller designed in single obj
shows smaller dispersion than the one designed in two
obj. The controller designed in two obj tends to form the
bigger cluster while it keeps relatively large dispersion.

Table 1 Performance of the controllers obtained by the
IWM for constant random walk

metric f1 c
statistics best avg worst best avg worst
single obj 139 674 2515 0.8 0.31 0.1
two obj 123 927 2505 0.9 0.58 0.3
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(a)For single objective optimization
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Fig. 8 State transition diagram of the best optimized
PFSM

Figs. 8(a) and 8(b) show the state transition diagram
of the best optimized PFSMs for single obj and two obj,
respectively. Each PFSM has its unique characteristics;
In the PFSM for dense aggregation (Fig. 8(a)), Wait al-
ways transits to Repel. This means an instant start even if
a state transits to Wait. Thus, swarm robots approach to
each other most of the time and they rarely repel. In the
PFSM for a large cluster (Fig. 8(b)), a state sometimes
transits to Wait. Wait transits to Approach or itself. This
tendency might give the ability to form larger clusters.

These tendencies are also confirmed in the trajectories
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(a)For single objective optimization

(b)For two objective optimization

Fig. 9 Trajectories of the swarm robots with the best op-
timized PFSM: Gray points show the initial positions
of the robots.

of the swarm robots. Fig. 9(a) shows the trajectories of
the swarm robots with the PFSM in Fig. 8(a). The robots
frequently moved around to approach the other robots.
On the contrary, the robots with the PFSM in Fig. 8(b)
stayed at a certain place as well as moved around.

6. CONCLUSIONS
This paper proposed to design a probabilistic finite

state machine for a swarm robot controller on an aggre-
gation problem by using the PSO. Several computer sim-
ulations were conducted to investigate the validity of the
proposed method. The results obtained in this paper show
that the proposed method is useful for the aggregation
problem. The collective behavior of the swarm reflected
the characteristics of the best optimized PFSMs.

The two objective functions employed in this paper are
not in the relationship of trade-off which is found in gen-
eral multi-objective optimization problems. Those objec-
tives can coincide because a single cluster brings small
dispersion. In near future, another PSO can be applied to
generate selection pressure towards the Pareto front.

As confirmed in Section 5, the best optimized PFSM

is interpretable. This means that the PFSM would be
transferable to real environment and readjustable after its
transfer. Future work will investigate these potential abil-
ities of the propose method in real robot experiments. In
literature, there are several swarm robotics control tasks
where the controller with the PFSM is employed. I would
like to apply the proposed method to those control tasks.
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[3] E. Şahin, “Swarm Robotics: From Sources of Inspi-
ration to Domains of Application,” Lecture Notes in
Computer Science, Volume 3342/2005, pp.10–20,
2005.

[4] S. Nolfi and D. Floreano: Evolutionary Robotics:
The Biology, Intelligence, and Technology of Self-
Organizing Machines, MIT Press, 2000.

[5] R. A. Brooks, “Artificial Life and Real Robots”, In
Proceedings of the First European Conference on
Artificial Life, pp.3–10, 1992.

[6] N. Jakobi, “Half-baked Ad-hoc and Noisy: Minimal
Simulation for Evolutionary Robotics”, In Proceed-
ings of the Fourth European Conference on Artifi-
cial Life, pp.348–357, 1997.

[7] O. Miglino, H. H. Lund and D. Nolfi, “Evolv-
ing Mobile Robots in Simulated and Real Environ-
ments”, Artificial Life 2, pp.417–434, 1995.

[8] D. Keymeulen, M. Iwata, K. Konaka, R. Suzuki, Y.
Kuniyoshi and T. Higuchi, “Off-line Mode-free and
On-line Model-based Evolution for Tracking Navi-
gation Using Evolvable Hardware”, In Proceedings
of the First European Workshop on Evolutionary
Robotics, Springer-Verlag, 1998.

[9] Y. Katada and K. Ohkura, “An Update Method of
Computer Simulation for Evolutionary Robotics”,
Intelligent Autonomous Systems 9 (IAS-9), pp. 357–
364, 2006.

[10] S. Garnier, C. Jost, R. Jeanson, J. Gautrais, M.
Asadpour, G. Caprari, G. Theraulaz, “Aggregation
Behaviour as a Source of Collective Decision in a
Group of Cockroach-like-robots”, In Lecture notes
in Computer Science: Vol. 3630. Advances in Arti-
ficial Life, Springer, pp. 169–178, 2005.
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