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ABSTRACT– Open-ended evolution is considered to be caused by several factors, one of which would
be co-evolution. Competitive co-evolution can give rise to the “Red Queen effect”, where the fitness
landscape of each population is continuously changed by the competing population. Therefore, if such
changes are captured, co-evolutionary progress would be measured. In this paper, we investigated
features of competitive co-evolutionary fitness landscapes on a predator-prey problem in computer
simulations. The results suggest to us that fitness landscapes on competitive co-evolutionary robotics
have no correlation with respect to the genetic data obtained at each generation in the evolutionary
runs.
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1. INTRODUCTION

Open-ended evolution is considered to be caused by several factors, one of which would be co-evolution.
In competitive co-evolution, “Red Queen hypothesis” has been discussed where a species must evolve for
existence and it becomes extinct if it stops evolving. In the simplest scenario of two competing species,
an advantage of one species might lead the disadvantage of the other species, then the other species also
responds with counter-adaptive strategies to get its own advantage, which appear “a co-evolutionary
arms race”.
In competitive co-evolution, the fitness landscapes of competing populations might be continuously
changed by such arms races. These changes could prevent populations from being stuck on local areas
of the landscape [1] as well as stimulate them to move better regions. Therefore, if such changes could
be captured, co-evolutionary progress would be measured.
In the Evolutionary Computation community, the geography of a fitness landscape has been discussed
with respect to problem difficulties. These are conceptualized as isolation, deception, multimodality and
flatness. In recent years, those are measured as the features of a fitness landscape, ruggedness (epistasis)
and neutrality [2][3][4].
Recently, we have proposed two methods to estimate features of competitive co-evolutionary fitness
landscapes on a predator-prey problem in computer simulations and investigated the Red Queen effect
on the fitness landscape [5]. Our results can be summarized as follows:
– In the metric where the features of fitness landscapes are calculated based on the accumulated data

from the initial generation to the current one, transition of the features in the fitness landscape
almost converged during the process of evolution. Thus, we can not confirm ever-changing fitness
landscapes in this metric.

– In the metric where the features of fitness landscapes are calculated based on the accumulated data
for certain generations, we confirm the transition of the features over generations.

These were calculated based on the accumulated data for certain generations. We are also interested
in whether these are observed through the metric calculated based only on genetic data obtained at
each generation. This is because this metric seems natural for competitive co-evolution. In this paper,
we investigated features of competitive co-evolutionary fitness landscapes calculated by genetic data
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obtained at each generation. The paper is organized as follows. The next section describes the method
to estimate the degree of neutrality and ruggedness in fitness landscapes, which we proposed in [4], and
then extends it for competitive co-evolution. Section 3 describes an experimental setup for a predator-
prey problem in a robot control problem. Section 4 gives the results of our computer simulations.
Section 5 discusses characteristics of the features of the fitness landscapes obtained in the experiments.
Conclusions are given in the last section.

2. METHODS FOR MEASUREMENTS OF FEATURES OF FIT-
NESS LANDSCAPES

In this section, the procedure for estimating features of a fitness landscape is described. Features to be
measured are ruggedness and neutrality. Ruggedness is estimated based on the Smith’s measurement[3]
and neutrality is based on our measurement, the standard genetic distance[6, 4].

2.1 Measure of Ruggedness

In real-world problems, ruggedness of a fitness landscape is predicted by the fitness correlation [2][3].
In this paper, therefore, the Smith’s measurement [3] was employed for the measure of ruggedness
because fitness correlation can be expressed as a scalar value in their measurement. In [3], it has been
reported that fitness correlation is expressed by the gradient of the expected offspring fitness versus
parent fitness graph. The expected offspring fitness for parent fitness k is given by:

f̄k =

∑
g∈Gk f(g)

|Gk| (1)

where, Gk is the set of offspring from parents with the fitness k over generations, g is an offspring
genotype and f(·) is the fitness function. It has been also reported in [4][3] that the gradient, r,
increases with the decrease of ruggedness, that this gradient is independent of neutrality and that
r ' 1.0 without any epistatic linkages between genes and r ' 0.0 with maximum epistatic linkages.
In order to measure features of competitive co-evolutionary fitness landscapes from genetic data ob-
tained at each generation, as mentioned in Section 1, we did small modification to the original one as
follows:

f̄k
tc

=

∑
g∈Gk

tc

f(g)

|Gk
tc
|

(2)

where, Gk
tc

is the set of offspring from parents with the fitness k at the current generation, tc. The
gradient, r, of f̄k

tc
for k is calculated by using the method of least squares for each generation.

2.2 Measure of Neutrality

2.2.1 Standard Genetic Distance and its characteristics

Genetic distance is a term of population genetics used for estimating gene differences per locus between
populations. Although there are several definitions for this, the Nei’s standard genetic distance[6] is
adopted in our method [4].
The Nei’s standard genetic distance is defined as follows. Consider two populations, X and Y . Let
xil = nil/M and yil = nil/M be the frequencies of the l-th alleles (i = 1, · · · , N , N , the length of the
genotype, l ∈ {1, 2} in a binary coded GA, nil, the number of the l-th allele, M , the population size)
in X and Y , respectively. The probability of identity of two randomly chosen genes is jxi = x2

i1 + x2
i2

in the population X, while it is jyi = y2
i1 + y2

i2 in the population Y . The probability of identity of a
gene from X and a gene from Y is jxyi = xi1yi1 + xi2yi2. The normalized identity of genes between
X and Y with respect to a locus is defined as Ii = jxyi/(

√
jxi

√
jyi) where, Ii = 1.0 if the two

populations have the same alleles in identical frequencies, and Ii = 0.0 if they have no common alleles.
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The normalized identity of genes between X and Y with respect to the average in all loci is defined
as I = JXY /(

√
JX

√
JY ), where, JX =

∑N

i=1
jxi/N , JY =

∑N

i=1
jyi/N and JXY =

∑N

i=1
jxyi/N . The

genetic distance between X and Y is defined as D = − loge I. The above definition cannot be applied to
the standard GA directly, because it is assumed in population genetics that a new allele always appears
on a locus when a mutation occurs while “back mutations [7]” frequently occur in the standard GA
due to the binary coding scheme. Therefore, the genetic distance of GAs between the population at the
initial generation and the one at the last generation is calculated as:

D(T ) =

T−1∑
t=1

Dt,t+1 (3)

where T is the number of the last generation and Dt,t+1 is the genetic distance between the population
in the t-th and the (t + 1)-th generation.
In [8], we investigated the characteristics of the Nei’s standard genetic distance mentioned above in
the fitness landscapes with neutrality and ruggedness. The characteristics of the Nei’s standard genetic
distance can be summarized as follows:
When the mutation rate per locus is sufficiently small,
1. The genetic distance increases with the increase of neutrality.
2. The genetic distance decreases with the increase of ruggedness in landscapes with neutrality.

Considering these, we proposed a method for estimate the degree of neutrality in fitness landscapes
with single species evolution [4]. That is, we estimate indirectly the degree of neutrality by measuring
the gradient of the genetic distance over generations, α, as well as r in Section 2.1.

2.2.2 Estimation of the Degree of Neutrality

In order to measure the degree of neutrality of competitive co-evolutionary fitness landscapes, we
calculate the genetic distance from genetic data obtained at each generation as follows:

Dtc = Dtc−1,tc , (4)

where Dtc−1,tc is the genetic distance between the population in the current generation, tc, and the
previous generation, tc − 1. Thus, the gradient of the genetic distance over generations, α, is Dtc itself
in this metric.

3. CONTROL TASK AND FITNESS FORMULA

The control task used in this paper was a predator-prey problem, and is based on a task originally
implemented by Floreano [1]. Following the setting given in [1], this problem was implemented in the
context of evolutionary robotics. The simulated environment is shown in Fig. 1(a), where a predator
seeks to hit (capture) a prey. Generally, predators and preys are set belonging to different species
which have different sensors and motors. Following this setting, two kinds of sensor arrangement were
employed, one (the predator) is equipped with linear while the other (the prey) is equipped with omni-
direction (Fig. 1(b)). Both agents were equipped with 18 infrared proximity sensors for detecting the
opponent agent and walls. The agent’s behavior is controlled by an ANN.
Employing a mathematical model of a mobile robot, the displacement of the agent was computed as
follows: xk+1 = xk + cos θk(VR + VL)/2, yk+1 = yk + sin θk(VR + VL)/2, θk+1 = θk + (VR − VL)/2R
where VR and VL are the velocities applied to the right and left wheel respectively, R is the radius of
an agent, 2R is the interval between the wheels. The maximum speed is equally set for both agents.
The system error was not implemented due to simple analysis.
At the beginning of each trial, the predator and prey were always positioned on a horizontal line at
the four random orientations for each in the middle of the environment at a distance corresponding to
half the environment width (Fig. 1(a)). One trial ended either when the predator hits the prey or when
400 steps are performed without the hit. Based on the fitness function used by [1], the performance
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(a) Two species
evolved in a square
arena with walls

(b) Simulated models of the sensors for
predator and prey robots.

Fig. 1. Experimental setup for a predator-prey problem.

measure to be maximized for the predator, pr, and the prey, py, were as follows: Fpr =
∑NumTrials

i=1
{1−

Stepi/MaxStep}/NumTrials, Fpy =
∑NumTrials

i=1
{Stepi/MaxStep}/NumTrials where NumTrials

is the number of trials for an individual (16 trials for each individual) and MaxStep is set at 400. The
fitness function increases as the predator catches the prey more quickly while the prey escapes longer
before being caught by the predator.

4. COMPUTER SIMULATIONS

4.1 Simulation Conditions

In this work, the agent controller was constructed by the ANN with 18 sensory neurons, 2 fully inter-
connected motor neurons and 3 fully interconnected hidden neurons. The connection weights among
neurons were genetically encoded and evolved. The total number of parameters is equal to 115. The
parameters were mapped linearly with the range, ω ∈ [−1.0, 1.0]. The output of neurons is given by
the sigmoid function, f(x) = 1/(1 + exp(−x)).

In the general settings of competitive co-evolution, an individual I from generation g is evaluated against
representatives of I’s opponent population from each previous generation [10]. In this experiment,
however, each individual was evaluated only against an individual selected randomly from the same
generation of the opponent population. This is because features of fitness landscapes are measured
through genetic data obtained at each generation.

Computer simulations were conducted by setting the population size 50 for each species. Each individual
was encoded as binary strings with 10 bits for each parameter. Therefore, the total length of the
genotype is L = 1150. The simple GA (SGA) were adopted to evolve ANN parameters as well as
calculate the genetic distance. The genetic operation for the SGA was standard bit mutation according
to the setting in our previous results in [4]. Based on the assumption of the genetic distance in Section
2.2.1, the per-bit mutation rate, q, was set at 10/L. Tournament selection was adopted. Elitism was
applied. The tournament size was set at 2. A generational model was used. Each run lasted 5,000
generations. We conducted 10 independent runs. We did not notice significant differences among these
runs with respect to all the measures and analyses reported here. Therefore, for clarity of explanation,
we give data for a single run, which will be described below.
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Fig. 2. Maximum fitness at each generation
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Fig. 3. Genetic distance α as a function of the correlation r

4.2 Simulation Results

Figure 2(a) and 2(b) show the maximum fitness at each generation for pr and py, respectively. We
observed dominance of pr against py in almost every generation although a set of oscillations in fitness
of py emerged.

Figure 3(a) and 3(b) show r and α at each generation for pr and py, respectively. The data were scattered
widely around the value, r = 0, for each species. This seems less likely that there are correlation in
their fitness landscapes. On the other hand, the genetic distances, α, were large. This means that those
fitness landscapes include large neutrality.

5. Discussion

The obtained results in the previous section show that their fitness landscapes have no correlation from
the view point of the short time period (for each generation). This means that evolutionary search
became random. This would be explained as follows:
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– In the experiment, each individual was evaluated only against an individual selected randomly from
the same generation of the opponent population. Therefore, representatives of opponent population
were substituted so frequently that fitness landscapes changed radically at each generation. As a
result, both species could not adapt enough to each other.

– The features of the fitness landscapes were calculated only from the genetic data obtained at each
generation. This seems likely that the amount of sampling data collected for each generation were
too small to estimate features of the fitness landscapes adequately.

– The mutation rate set in the experiment was 10/L. Due to this rate, the effective mutation rate
was likely to exceed a certain critical mutation rate[9] although we have confirm the characteristics
mentioned in Section 2 at this mutation rate in our preliminary experiments using test functions.

6. Conclusions

In this work, we investigated features of competitive co-evolutionary fitness landscapes calculated by
genetic data obtained at each generation. Our results can be summarized as follows:
– We confirmed the radical transition of the features of fitness landscapes but did not find any trends

of them.
– The degree of ruggedness was so large that there were no correlation in their fitness landscapes.
– Fitness landscapes include large neutrality.

In this work, we also cannot confirm ideal co-evolutionary progress[10], where there is continuous
progress in both competing populations. On the other hand, the obtained knowledges in this paper can
help us understand the results obtained in the same kinds of experiments where fitness landscapes are
changed so frequently such as evolution in dynamical environments.
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