

機械工学科 小田 靖久 2020/5/7

コースを開いた様子 授業/単元ごとにトピックが設定されています

熱工学(M科・2020年度前期・火曜2限)

ダッシュボード ▶ コース ▶ 摂南大学 ▶ 寝屋川キャンパス ▶ 理工学部 / Faculty of Science and Engineering ▶ 機械工学科 ▶ 熱工学

ナビゲーション ダッシュボード ☆ サイトホーム ▶ サイトページ ▼ マイコース		📮 アナウンスメント	コース概要 熱エネルギーを動力に変換する装置である素 機関や冷蔵庫・エアコンなどの熱システム は、現代社会を支えるエネルギー変換装置と して欠くことができない。これらの熱を利用 する様々な装置を設計する上で、熱の移動現 象の理解が不可欠である。この授業では、依 熱工学の基礎と実際的な熱システムの動作履 理を学び、現実の問題に対して解決に寄与で きる技術を養う。さらに、これらの現象の物 理学的背景を紹介し、熱工学分野の理解を認 める。
	() () (2)	伝熱とは(1) ①伝熱工学の意義が説明できる ②熱伝導,対流熱伝達,熱ふく射の違いが説明できる ブック:5 小テスト:5 課題:1	
		伝熱とは(2) ^{利用できません。}	
		定常熱伝導	

コース概要
熱エネルギーを動力に変換する装置である熱機関や冷蔵庫・エアコンなどの熱システムは、現代社会を支えるエネルギー変換装置として欠くことができない。これらの熱を利用する様々な装置を設計する上で、熱の移動現象の理解が不可欠である。この授業では、伝熱工学の基礎と実際的な熱システムの動作原理を学び、現実の問題に対して解決に寄与できる技術を養う。さらに、これらの現象の物理学的背景を紹介し、熱工学分野の理解を深める。

授業/単元ごとのトピックを選択して開いた様子 トピック中の説明資料(ブック)を選択する

	コース概要 ロロ
♥■ アナワンスメント	熱エネルギーを動力に変換する装置である熱 機関や冷蔵庫・エアコンなどの熱システム は、現代社会を支えるエネルギー変換装置と
伝熱とは(1)	して欠くことができない。これらの熱を利用 する様々な装置を設計する上で、熱の移動現 象の理解が不可欠である。この授業では、伝 熱工学の基礎と実際的な熱システムの動作原
①伝熱工学の意義が説明できる ②熱伝道、対流熱伝達、熱ふく財の違いが説明できる	理を学び、現実の問題に対して解決に寄与で きる技術を養う。さらに、これらの現象の物
■ 説明資料1-1 (伝熱とは) ■ 確認問題1-1	は 背景を紹介し、熱工学分野の理解を深
 説明資料1-2 (熱の伝達の形態) 	
✔ 確認問題1-2	
✔ 確認問題1-3	
📔 説明資料1-3 (熱の伝達における3形態の組み合わせ)	
✔ 確認問題1-4	

説明資料(ブック)を開いた様子 複数ページある場合は、次のページにクリックで進む

授業/単元ごとのトピックを選択して開いた様子 トピック中の確認問題(小テスト)を選択する

確認問題1-1

伝熱に関係する機械について、以下の問題にこたえよ。

解答は、送信してください。

熱エネルギーを動力に変換する装置である熱 機関や冷蔵庫・エアコンなどの熱システム は、現代社会を支えるエネルギー変換装置と して欠くことができない。これらの熱を利用 する様々な装置を設計する上で、熱の移動現 象の理解が不可欠である。この授業では、伝 熱工学の基礎と実際的な熱システムの動作原 理を学び、現実の問題に対して解決に寄与で きる技術を養う。さらに、これらの現象の物 理学的背景を紹介し、熱工学分野の理解を深 める。

確認問題(小テスト)の解答中 選択肢から正解を選ぶ問題の例

			テスト終了…
▲説明資料1-1(伝熱とは)	ジャンプ	\sim	説明資料1-2(熱の伝達の形態) ▶

確認問題(小テスト)の解答中 数値入力問題の例

確認問題(小テスト)の解答中 複数ページで構成される問題もある

問題 1 解答保存済み 最大評点 2.00 Y 問題にフラグを 付ける	選択肢から用語を選び 熱伝導 についての説明 物体内(固体や静止している流体)の温度が ²	文を完成させよ ⊼均一で が存在するとき	┢移動する	
問題 2 解答保存済み 最大評点 3.00 ♥ 問題にフラグを 付ける	選択肢から用語を選び 対流熱伝達 についての	説明文を完成させよ ✓ 物体面に移動する		
問題 3 解答保存済み 最大評点 2.00 ♥ 問題にフラグを 付ける	選択肢から用語を選び 熱ふく射 についての説 内部エネルギーの一部が物体表面から可視光	明文を完成させよ や赤外線などの	1 反射 🖌 される	複数ページの試験もある ボタンをクリックして 次のページに行こう
< 説明資料1-	2(熱の伝達の形態)	ジャンプ	~	次のページ 確認問題 1 – 3 ►

確認問題(小テスト)の解答中 複数ページで構成される問題は最後に保存できる

問題 4	伝熱の各形態に対する説明文を選択せよ	
解答保存済み		
最大評点 3.00	熱伝導	
♥ 問題にフラグを 付ける		
	对流熱伝達 	
	熱ふく射	
前のページ		テスト終了…
◀ 説明資料1-2	- 2 (熱の伝達の形態) ジャンブ 最終ページの	確認問題1-3►
	テスト終了ボタン	
	をクリックして	

解答は保存される

確認問題(小テスト)の開始画面に戻ってくる 解答を修正するか、提出するかを選択できる

確認問題1-1 解答を修正したいときは 受験概要 このボタンをクリック ステータス 問題 1 解答保存済み 受験に戻る すべてを送信して終了する ジャンプ ... 解答に納得したら 説明資料1-2(熱の伝達の形態) ▶ \sim 送信(提出)して終了 このボタンをクリック 採点結果が表示される

確認問題(小テスト)のレビュー画面 採点結果と解説文書が見られる

提出後の確認問題(小テスト)の開始画面 問題によっては再挑戦できる

振り返り(提出)を開いた様子 オンラインでのコメントの提出方法

振り返り

このセクションで勉強したことで、できるようになったことを書いてください。また、疑問に思ったことがあれば書いてください。

提出ステータス

提出ステータス	未提出
	未評定
	2020年 05月 27日(水曜日) 00:00
	20 日 3 時間
	-
	▶ コメント (0)
振り返り ボ	提出物をアップロード・入力する たはまだ提出していません。 文書の入力を開始する タンをクリック

振り返り文書の記入欄

振り返り

このセクションで勉強したことで、できるようになったことを書いてください。また、疑問に思ったことがあれば書いてください。

熱エネルギーを動力に変換する装置である熱機関や冷蔵 庫・エアコンなどの熱システムは、現代社会を支えるエ ネルギー変換装置として欠くことができない。これらの 熱を利用する様々な装置を設計する上で、熱の移動現象 の理解が不可欠である。この授業では、伝熱工学の基礎 と実際的な熱システムの動作原理を学び、現実の問題に 対して解決に寄与できる技術を養う。さらに、これらの 現象の物理学的背景を紹介し、熱工学分野の理解を深め る。

振り返り文書の記入欄、記入後保存する

振り返り

このセクションで勉強したことで、できるようになったことを書いてください。また、疑問に思ったことがあれば書いてください。

熱エネルギーを動力に変換する装置である熱機関や冷蔵 庫・エアコンなどの熱システムは、現代社会を支えるエ ネルギー変換装置として欠くことができない。これらの 熱を利用する様々な装置を設計する上で、熱の移動現象 の理解が不可欠である。この授業では、伝熱工学の基礎 と実際的な熱システムの動作原理を学び、現実の問題に 対して解決に寄与できる技術を養う。さらに、これらの 現象の物理学的背景を紹介し、熱工学分野の理解を深め る。

入力後、振り返り(提出)に戻った様子 提出文書の状態と内容を確認できる

振り返り

提出操作が別途必要な場合もあります

入力後、振り返り(提出)の様子 教員からのフィードバック(質問への解答)

提出ステータス

提出ステータス	評定のために提出済み
評定ステータス	未評定
終了日時	2020年 05月 27日(水曜日) 00:00
残り時間	20日2時間
最終更新日時	2020年 05月 6日(水曜日) 20:48
オンラインテキスト	・ また、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
提出コメント	▶ コメント (0)
	提出を編集する 教員からのフィードバック(回答) あなたはまだ提出に変更を加えるこ 後日表示される
フィードバック	
フィードバックコメント	熱力学第2法則のためです。