問題·解答 用紙番号

31

の解答用紙に解答しなさい。

数 学

〈受験学部·学科〉

3科目型 受験者

理工学部(住環境デザイン学科・建築学科・都市環境工学科・機械工学科・電気電子工学科)

問題は100点満点で作成しています。

- 【 】 次の問1~問4の空欄 (r) ~ (r) に当てはまる整数を0~9から1つ選び該当する解答欄にマークせよ。ただし、分数は既約分数であらわせ。(50点)
 - 問1.2つの2次方程式

$$x^{2} + (2a - 1)x - 2a + 4 = 0$$
, $4x^{2} - 6ax + 3a + 8 = 0$

のうち、どちらか一方だけが実数解を持つような実数の定数 a の値の範囲は

$$\frac{(au)}{(au)}$$
 $< a \le \frac{(au)}{(au)}$, $\frac{(au)}{(au)}$ $\le a < \frac{(au)}{(au)}$ である。

問2. 実数 x, y が連立不等式

$$x-y+1 \ge 0$$
, $3x+y-15 \le 0$, $x \ge 0$, $y \ge 0$ を満たすとき, $x^2+y^2-3x-9y$ のとる値の最大値は (r) (r) (r) であり、そのときの x , y の値は $x=$ (r) であり、そのときのまた、 $x^2+y^2-3x-9y$ のとる値の最小値は (x) (r) であり、そのときの x , y の値は $x=$ (y) である。

問3. 表と裏が等しい確率 $\frac{1}{2}$ で出る 1 枚のコインを 6 回続けて投げる。このとき、表が 3 回だ

た,	表が続けて3回以上出る確率は	(ヒ)		である。
		(フ)	(~)	

問 4. 初項 3, 公比 2 の等比数列の初項から第n 項までの和を S_n ($n=1,2,\cdots$) とする。

 $S_n \ge 30000$ を満たす最小の自然数 n は (x) (x) である。 ただし、 $\log_{10} 2 = 0.3010$ とする。

次の問1~問3の空欄 (r) ~ (y) に当てはまる整数を0~9から1つ選び該当する解答欄にマークせよ。ただし、分数は既約分数であらわせ。また、根号の中に現れる自然数が最小となる形で答えること。たとえば、 $4\sqrt{2}$ と答えるところを $2\sqrt{8}$ のように解答しないこと。 (25点)

平面上で、点 O を中心とする半径 $\sqrt{6}$ の円の円周上に異なる 3 点 A,B,C があって \overrightarrow{OA} + $\sqrt{3}$ \overrightarrow{OB} + $2\overrightarrow{OC}$ = $\overrightarrow{0}$

を満たしている。

問1.
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \boxed{(7)}$$
 , $\overrightarrow{OA} \cdot \overrightarrow{OC} = -\boxed{(4)}$, $\overrightarrow{OB} \cdot \overrightarrow{OC} = -\boxed{(5)}\sqrt{\boxed{(エ)}}$ である。

問 2.
$$\triangle$$
ABC の 3 辺の長さは \triangle AB = $($ (オ) $\sqrt{ ($ (カ) $}$, \triangle BC = $($ (キ) $+ \sqrt{ ($ (ク) $}$, \triangle CA = $($ (ケ) $\sqrt{ ($ (コ) $}$ である。

問3.
$$\triangle ABC$$
 の面積は $\frac{(++)}{(-+)} + \frac{(--)}{(-+)} \sqrt{(--)}$ である。

xy 平面上の曲線

$$C: y = \cos x \quad \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right)$$

とx軸によって囲まれる図形をDとする。また、Dを2つの部分に分ける、傾き1の直線をlとして、lとCの交点Pの座標を(θ 、 $\cos\theta$)とする。

問1. Dの面積は (ア) である。

問 2. l が分ける D の 2 つの部分のうち、点 $\left(\frac{\pi}{2},0\right)$ を含む部分の面積 S は

$$S = \frac{(1)}{(1)} \left(-\sin^{(x)} \theta - (1) \sin \theta + (1) \right)$$

と表せる。
$$\theta=0$$
 のとき $S=\frac{(キ)}{(b)}$ であり, $\theta=\frac{\pi}{6}$ のとき $S=\frac{(b)}{(1)}$ である。

問 3. l が分ける D の 2 つの部分の面積が等しいとき、 $\sin\theta = -$ (サ) + $\sqrt{(シ)}$ である。このとき、点 P における C の接線を m とすると、l と m および x 軸によって囲まれる部分の面積は $\sqrt{(ス)}$ である。

計 算 用 紙

計 算 用 紙