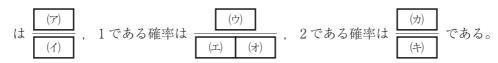
問題·解答 用紙番号

56

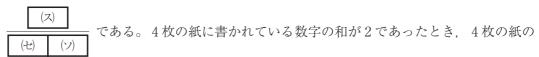
の解答用紙に解答しなさい。

数 学


〈受験学部·学科〉

理工学部, 薬学部,


農学部(農業生産学科・応用生物科学科・食品栄養学科)


問題は100点満点で作成しています。

- 【 」 次の問1~問4の空欄 (r) ~ (n) に当てはまる整数を0~9から1つ選び,該当する解答欄にマークせよ。ただし,分数は既約分数で表せ。(58点)
 - 問1. 箱の中に数字が書かれた10枚の紙が入っている。0と書かれたものは5枚, 1と書かれたものは3枚, 2と書かれたものは2枚ある。
 - (1) 箱の中から1枚の紙を無作為に取り出す。このとき、書かれている数字が0である確率

(2) 箱の中から4枚の紙を同時に無作為に取り出す。このとき、書かれている数字の和が1

うち少なくとも 1 枚に 1 が書かれている条件付き確率は (5) である。

- 問 2. 不等式 $8^{-x} + 5 \times 4^{-x} 8 \times 2^{-x} 12 \ge 0$ を満たすxの値の範囲は、 $x \le -$ (ツ) である。
- 問 3. $a_1=3$, $a_{n+1}=2a_n+4$ (n=1, 2, 3,……) で定められる数列 $\left\{a_n\right\}$ の一般項は, $a_n=\frac{(\bar{\tau})}{(\bar{h})}\times (\bar{\tau})^n-(\bar{\tau})$ である。
- 間 4. 2024 の正の約数は全部で (ヌ) (ネ) 個あり、それらすべての和は
 - (ノ) (ハ) (ヒ) (フ) である。2024 の正の約数の逆数すべての和は
 - (へ)
 (ホ)
 (マ)

 (ミ)
 (ム)
 (メ)

 である。2024 の正の約数すべての積を素因数分解すると
 - (E) (Y) (Z) と表される。ただし,
 - (ヨ) (ラ) < (ル) (レ) である。

次の空欄 (r) ~ (r) に当てはまる整数を $0 \sim 9$ から 1 つ選び,該当する解答欄にマークせよ。ただし,分数は既約分数で表せ。(20点)

a と b は正の定数とする。 2 次関数 $y=-\frac{1}{a}$ (x^2-10x) のグラフを C_1 とし、 $y=\frac{1}{5}x^2$ のグラフを C_2 とする。 C_1 と C_2 の交点のうち、 原点と異なる点を P とする。 P が C_1 の頂点であるとき、 $a=\boxed{(7)}$ であり、 P の座標は $\Big(\boxed{(4)}$ 、 $\Big(\dot{C}$) である。 以下、 $a=\frac{1}{5}$ (ア) の場合を考える。 C_1 と C_2 で囲まれた部分を D とする。

- (1) D の面積は (x) (x) である。
- (2) 直線 y=bx が D の面積を 2 等分するとき,b= (キ) である。また,y=bx と C_2 で囲まれた部分の面積が D の面積の $\frac{1}{3}$ であるとき, $b=\sqrt[3]{\frac{(f)}{(f)}}$ である。

| 次の空欄 (ア) ~ (ネ) に当てはまる整数を 0~9 から 1 つ選び, 該当する解答欄にマークせよ。ただし、分数は既約分数で表せ。(22点)

x は $\frac{3}{2} < x < \frac{a}{3}$ の範囲を動く。ただし、a は $\frac{9}{2}$ より大きい定数とする。

BC = a-3x, CA = 4x-6, \angle BCA = 90° である直角三角形 ABC の面積を f(x) とすると,

$$f(x) = (て)$$
 $x^2 + ((イ)) a + (\dot{ })) x - (エ) a である。$

$$x = \frac{ (x) }{ (y) } a + \frac{ (x) }{ (y) }$$
 のとき、 $f(x)$ は最大値 $\frac{ (y) }{ (x) } a^2 - \frac{ (y) }{ (y) } a + \frac{ (x) }{ (y) }$ を

とり、このとき BC =
$$\frac{(タ)}{(\digamma)}$$
 $a - \frac{(♡)}{(\digamma)}$, CA = $\frac{(ኑ)}{(\digamma)}$ $a - \frac{(Ξ)}{()}$,

$$\cos \angle ABC = \frac{(x)}{(x)}$$
 である。

計 算 用 紙

計 算 用 紙