問題·解答 用紙番号

51

の解答用紙に解答しなさい。

数 学

〈受験学部・学科〉

法学部, 国際学部, 経済学部, 経営学部, 現代社会学部, 看護学部. 農学部(食農ビジネス学科)

問題は100点満点で作成しています。

【) 次の問 1 ~問 4 の空欄 (r) ~ (J) に当てはまる整数を 0 ~ 9 から 1 つ選び該当する解答欄にマークせよ。ただし,分数は既約分数で表せ。また,根号を含む形で解答する場合は,根号の中に現れる自然数が最小となる形で答えること。例えば, $4\sqrt{2}$ と答えるところを $2\sqrt{8}$ のように解答しないこと。(40点)

問 1 .
$$\frac{1}{3-\sqrt{7}}$$
 の分母を有理化すると $\frac{(r)}{(r)}+\sqrt{(1)}$ である。 $\frac{1}{3-\sqrt{7}}$ の整数部分を p , 小数部分を q とすると, $p=\frac{(x)}{(r)}$, $q=\frac{\sqrt{(x)}-(x)}{(x)}$ である。また, $p^2+2pq+4q^2=\frac{(r)}{(r)}$ である。

問2. △ABC において、AB = 12、BC = 18、CA = 15 とする。このとき、

問3.6進法で表された数1153(6)を10進法で	で表す。	と (タ) (チ	·) ('y	ツ である。また,10
進法で表された数 1153 を 6 進法で表すと	(テ)	(<i>F</i>)	(ナ)	(=)	₍₆₎ である。

問 4. 次のような値の個数が 10 のデータについて考える。a は定数とする。

5, 4, 6, 2, a, 6, 3, 10 - a, 9, 5

このデータの平均値は (x) である。さらに、このデータの分散が4のとき、aの値はその値の小さい順に a= (x) 、 (y) である。

a は定数とする。 $a-2 \le x \le a+2$ における x の 2 次関数 $f(x)=-x^2+4ax$ の最小値を m とし、最大値を M とする。

問
$$1. \ a=3$$
 のとき、 $m=$ $(ア)$ (1) , $M=$ $(ウ)$ $(エ)$ である。 $a=-1$ のとき、 $m= (オ)$, $M=$ $(カ)$ である。

問2. 定数aのとる値によって、mは次のように表される。

$$m = \begin{cases} \begin{array}{c|cccc} (\ddagger) & a^2 - & (\not) & a - & (\not) \\ \hline (\ddagger) & a^2 + & (\flat) & a - & (\nearrow) \\ \end{array} & \left(\begin{array}{c} a \geq & (\sqsupset) \\ \end{array} \right) \end{cases}$$

問3. 定数aのとる値によって、Mは次のように表される。

$$M = \left\{ \begin{array}{c|c} (\mbox{$\langle \pm \rangle$}) & a^2 + (\mbox{$\langle \Sigma \rangle$}) & a - (\mbox{$\langle \mathcal{F} \rangle$}) & a \geq (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \Sigma \rangle$}) & a^2 & (-(\mbox{$\langle \pm \rangle$}) & a \leq a < (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \Sigma \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a - (\mbox{$\langle \pm \rangle$}) & a \leq a < (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \Sigma \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a - (\mbox{$\langle \pm \rangle$}) & a \leq a < (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a - (\mbox{$\langle \pm \rangle$}) & a \leq a < (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a - (\mbox{$\langle \pm \rangle$}) & a \leq a < (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a - (\mbox{$\langle \pm \rangle$}) & a \leq a < (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a - (\mbox{$\langle \pm \rangle$}) & a \leq a < (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a \leq a < (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) & a = (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox{$\langle \pm \rangle$}) \\ \hline (\mbox{$\langle \pm \rangle$}) & a^2 - (\mbox$$

赤玉が3個、白玉が2個の合計5個の玉が入った袋Aと、赤玉が5個、白玉が3個の合計8個の玉が入った袋Bがある。袋Aから玉を1個無作為に取り出し、取り出した玉が赤玉のときは袋Bから玉を2個、白玉のときは袋Bから玉を3個同時に無作為に取り出す。

問1. 袋Aと袋Bから取り出したすべての玉が赤玉である確率は

問2. 袋Aと袋Bから取り出したすべての玉について、赤玉の個数と白玉の個数が等しい確率

問3. 袋Aと袋Bから取り出したすべての玉について、赤玉の個数をa個(0 $\leq a \leq$ 3). 白玉

の個数をb個 $(0 \le b \le 4)$ とするとき, a > b となる確率は

(丰)	(ク)		ı
(ケ)	(コ)	である。	ょ

た、a > b であるとき、袋Bから少なくとも1個白玉を取り出した条件付き確率は

計 算 用 紙

計 算 用 紙