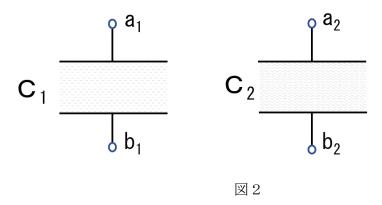

2024 年度 編入学試験 専門基礎 【理工学部 電気電子工学科】

受 験 番 号		氏 名
_		

- 図1のように抵抗Rである金属棒を12本使って立方体の回路を作製した。以下の問いに答えよ。 ただし、電源の内部抵抗などは無視できるものとする。(50点)
 - 問1. 電圧Eの直流電源のプラス端子 a を立方体回路の端子①に接続し、マイナス端子 b を回路の端子⑤に接続した。 (1) このとき、電源から出力される電流が I_1 であった。回路の①、②間に流れる電流の大きさを I_1 を用いて表せ。

(2) 立方体回路の①,②間の電位差は、③,④間の電位差の何倍になるのかを求めよ。

(3) 立方体回路の①, ⑤間の合成抵抗を求めよ。


問2. 次に、図1の直流電源と立方体回路の接続を外してから、電源のプラス端子 a を立方体回路の端子①に接続し、マイナス端子 b を回路の端子④に接続した。このとき、電源から出力される電流が I_2 であった。 I_2 は、 I_1 の何倍になるのか求めよ。

2024 年度 編入学試験 専門基礎 【理工学部 電気電子工学科】

 \blacksquare 図 2 のように静電容量 C_1 , C_2 の 2 つのコンデンサがあり、いずれもまだ電荷は蓄えられていない。

以下の問いに答えよ。ただし、接続線などでの損失は無視できるものとし、接続時に過渡現象は発生しないものとする。(50点)

問1. コンデンサ C_1 にだけ直流電圧 V_1 を加えた。コンデンサ C_1 に蓄えられるエネルギー W_1 を求めよ。

問2. コンデンサ C_1 の電圧が V_1 の状態で,電源等を取り外してコンデンサ C_1 を単独にした後,コンデンサ C_2 と接続した。接続した箇所は,端子 a_1 と a_2 ,端子 b_1 と b_2 である。接続後,コンデンサ C_1 の電圧が V_2 になった。コンデンサ C_1 からコンデンサ C_2 に移動したエネルギー W_2 を求めよ。

問3. コンデンサ C_1 の電極間は比誘電率 ε_{r1} の誘電体で満たされており、コンデンサ C_2 の電極間は比誘電率 ε_{r2} の誘電体で満たされている。 ε_{r1} と ε_{r2} との比($\varepsilon_{r1}/\varepsilon_{r2}$)を上記の電圧 V_1 および V_2 を用いて表せ。ただし、真空の誘電率を ε_0 とし、2 つのコンデンサの大きさ及び形状は同じとする。