三角形メッシュを用いた放電プラズマ解析用静電粒子コードの開発と それを用いた電子注入によるスーパーダブルレイヤ形成に関する研究 表面物性工学研究室 21M814 廣 大輔

1. はじめに

微粒子を含むプラズマのことを微粒子プラズマまたはダストプ ラズマという。当研究室ではシースプラズマ中に浮遊する微粒子 の全面にダイヤモンド・DLC などの硬質膜をコーティングし、新 素材開発へ応用することを目指している。このため本研究では、浮 遊する微粒子の挙動や微粒子雲の形状を予測すること、あるいは 目的に応じた電極形状の最適化、プラズマの各パラメータの最適 化などを可能とするため、真空チャンバー内で生じているプラズ マの現象を計算機シミュレーションにより再現することを目指し た。特に、浮遊する微粒子表面の炭素を結晶化するために、シース 領域への電子注入によってスーパーダブルレイヤを発生させ、そ の電位差による注入電子の加速によって微粒子の追加速すること を新たに発案し、その可能性について検討を行った。

ダブルレイヤは荷電粒子がマクスウェル分布に従わない現象で あるため、流体的描像で解く方法は適していない。また、シース構 造は二次電子放出や高速電子などによってシース構造は変化する と考えられる。また、電極で微粒子雲の制御を行いたいと思惑もあ る。本研究は電極と荷電粒子の相互作用によって作られる電界と 荷電粒子の運動を解き、粒子の境界条件の設定が容易で荷電粒子 の運動論効果を含む粒子コードに複雑な形状の電極でも対応でき るように三角形メッシュを用いた粒子コードを開発することにし た。さらには低圧放電プラズマの実験条件に対応できるよう、中性 粒子との衝突の効果を含んでいる。これらは通常の粒子コードで は扱われることは少ない。今回開発した粒子コードの大きな特徴 である。この粒子コードを用いて、まずシース構造の形成シミュレ ーションを行い、シース理論との定量的な一致を見た。開発した粒 子コードの妥当性を確認できたので、これを用いてスーパーダブ ルレイヤの発生やエンハンスの可能性について検討を行った。

2. 粒子コードの計算手法

粒子コードの計算は粒子一つ一つを運動方程式で解き、電場は 有限要素を用いたメッシュでポアソン方程式を利用して解いた。 粒子の数より少ないメッシュを導入することで粒子同士の計算せ ずに粒子とメッシュで計算している。開発した粒子コードの特徴 は他の粒子コードに比べてイオンと中性粒子の衝突効果を導入し ている点である。また、複雑な形状の電極でも対応できるように三 角形メッシュにした。

3. 開発した粒子コードの妥当性(シース構造)

開発した三角形メッシュ粒子コードは二次元シミュレーション である。両端の境界は電極となっていて OV で固定し、電極でイオ ンと電子を消滅させシース形成を行った結果を電位分布として図 3-1 に示す。図の関係上x軸とy軸が逆になっている。カラーバー は赤色が最大値で青色は最小値である。

図 3-1 はシース形成シミュレーションの一例で結果をx方向に 平均して一次元グラフにして解析した。上が電位分布、下が密度分 布である。電位分布と密度分布ともに横軸は座標で縦軸はそれぞ れ電位、密度である。密度分布は赤色がイオン、青色が電子を表し ている。

図 3-2 電位分布、密度分布(一次元)

図 3-2 の密度分布と電位分布はともにシース理論と定量的に一致 し、シミュレーションの妥当性が確認できた。

次にシースプラズマ中に電子注入をして空間上にできるダブル レイヤを発生させ、注入電子の追加速ができるかシミュレーショ ンを行った。

4. 負バイアスシース中に電子注入

流れのあるプラズマでは、イオンと電子の2流体不安定性から電 荷の偏りが生じ、小さな電位差が生じる。その構造に向かって電子 が流れ込むことにより構造が維持される。この状態をダブルレイ ヤという。このダブルレイヤに向かってさらに新しい電子が流れ 込むことでダブルレイヤは成長し、大きな電位差を持つスーパー ダブルレイヤに至る。

図 4-1 は電極のない空間上のダブルレイヤ(宇宙空間)のシミュレ ーション結果である。電子は左から右にマクスウェル分布をシフ トさせて流していて、右側の境界で粒子を捨てている。シミュレー ション開始後 1.7us、3.1usの速度位相空間と電位分布である。速度 位相空間は横軸が電子の流れる向き、縦軸が速度v_v(m/s)である。

2流体不安定性は相対速度があると起きやすい。シースでは、プラ ズマから電極に向かってイオンが加速されているので、電極側か ら電子注入することでダブルレイヤが発生すると考え、本研究は シースプラズマ中に電子注入をしてダブルレイヤを発生させスー パーダブルレイヤーの形成(宇宙空間で起きている現象を実験室で 再現)を狙っていたが、シースプラズマ中にダブルレイヤができな かった。そこでスーパーダブルレイヤの構造と負バイアスシース の構造に着目した。スーパーダブルレイヤは空間上でイオンと電 子が大きく分離し、大きな電位差がある。電位差によって電子はト ラップまたは加速する。このことから速度位相空間では図41のよ うに穴が生じている。スーパーダブルレイヤの構造に電子が流れ 込むことによってその構造は成長する。図は負バイアスをかけて シース形成を行ったシミュレーション結果の速度位相空間 (8.3us)である。

負バイアスシースは電極とプラズマの電位差により電子が全く ない領域ができる。このようにスーパーダブルレイヤと負バイア スシースの構造は類似している。初期のスーパーダブルレイヤ形 成を負バイアスシースで代用できないかと考え、負バイアスシー スに電子注入を行いシミュレーションした。シミュレーションは 左の電極に 50V の負バイアス、右の電極を 0V で負バイアスシー ス形成を行い、電極側からシースに向かって電子を熱速度の 50 倍 の速さで注入した。図 4-3、図 4-4 は電子注入開始後 0.003us、3.00us の速度位相空間と電位分布である。電位分布は横軸が座標、縦軸が 電位である。

速度位相空間では電子が左側から右へ加速しながら流れている 電子が注入電子である。

プラズマ電位が上昇したが電子の二流体不安定性が強く安定し なかった。本研究は低圧放電プラズマなためイオンと中性粒子が 衝突している。そこでイオンと中性粒子の衝突効果を入れてシミ ュレーションした。

中性粒子の衝突効果を入れて注入電子を熱速度の 50 倍から 100 倍に電極間も 12cm~15cm に広げた。図 4-5 は電子注入開始後 200usの速度位相空間と電位分布である。

イオンと中性粒子の衝突を考慮すると電子の不安定性が抑えられ プラズマ電位が安定しながら上昇した。

5. 結論

三角形メッシュを用い、中性粒子との衝突効果を取り入れた放電 プラズマ用静電粒子コードを開発した。開発した粒子コードによ るシース形成のシミュレーションの結果はシース理論と定量的に 一致し、精度の良いシミュレーションが可能であることが確認で きた。今後の展開として、微粒子雲の形状に対する、電子温度、電 子密度、電極形状の影響や、イオンと中性粒子の衝突がシースにど のような影響を及ぼすか、などの研究に活用できるものと思われ る。

開発した粒子コードを用いて負バイアスシースで初期段階のス ーパーダブルレイヤを代用できることが確認された。さらに負バ イアスシースに電子注入することで、プラズマ電位が上昇し、注入 電子を追加速できることが確認された。今後はスーパーダブルレ イヤをエンハンスするための最適条件の探索や、電子注入によっ て発生する電子の不安定性を抑える方法・条件の探索を行ってゆ く必要があるだろう。

参考文献

[1] Michael A. Lieberman and Allan J. Lichtenberg: Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, Inc. All rights reserved 2005

関連する発表

[1]廣 大輔、田口 俊弘、高山 大輔、井上 雅彦
三角形メッシュを用いた微粒子挙動解析用静電粒子コードの開発とそれによるイオンシース形成シミュレーション、応用物理学会関西支部 2021 年度第2回講演会、2021 年10月15日
[2]廣 大輔、田口 俊弘、高山 大輔、井上 雅彦
粒子シミュレーションを用いた放電シースプラズマの解析とその中で発生するダブルレイヤーの生成、2022 年第83回応用物理学会秋季学術講演会、2022 年9月23日、東北大学

謝辞

摂南大学名誉教授田口俊弘先生には、プラズマの物理、粒子コードの作成方法、研究の進め方などについてご指導、ご支援を賜 りました。深く感謝申し上げます。